
ME 5350 - Homework 3

James Grisham

August 22, 2016

Part I

Problem 3.9

Problem Statement

Does equilibrium exist for the following stress distribution in the absence of body force?

σx = 3x2 + 4xy − 8y2

τxy =
1

2
x2 − 6xy − 2y2

σy = 2x2 + xy + 3y2

σz = τxz = τyz = 0

Solution

This problem can be solved by inserting the stress components into the equilibrium equation. The
equilibrium equation is given by

σij,j +✓
✓✼
0

bi = 0

Written in index notation, the equations for stress become

σ11 = 3x21 + 4x1x2 − 8x22

σ12 =
1

2
x21 − 6x1x2 − 2x22

σ22 = 2x21 + x1x2 + 3x22

σ33 = σ13 = σ23 = 0

The equilibrium equation can be rewritten as

σij,j =

3
∑

j=1

σij,j = σi1,1 + σi2,2 + σi3,3

For i = 1,

σ1j,j = σ11,1 + σ12,2 + σ13,3
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Evaluating the derivatives yields

σ11,1 = 6x1 + 4x2

σ12,2 = −6x1 − 4x2

σ13,3 = 0

Therefore,
σ1j,j = σ11,1 + σ12,2 + σ13,3 = 0

For i = 2,
σ2j,j = σ21,1 + σ22,2 + σ23,3

Evaluating the derivatives:

σ21,1 = x1 − 6x2

σ22,2 = x1 + 6x2

σ23,3 = 0

Therefore,
σ2j,j = σ21,1 + σ22,2 + σ23,3 = 2x1 6= 0

Therefore, equilibrium does not exist for the given stress distribution.

Problem 3.26

Problem Statement

A rope is hung from the ceiling. Let the density of the rope be 2 g/cm3. Find the stress in the
rope.

Solution

The equilibrium equation is given by
σij,j +Xi = 0

where Xi is a body force. Let the positive x1-direction be down. Then, the equation for i = 1
is

σ11,1 + σ12,2 + σ13,3 +X1 = 0

Assuming that σ12 = σ13 = 0, the equation becomes

σ11,1 +X1 = 0

The body force is due to gravity. Therefore,

X1 = ρg

Inserting this relation for the body force yields

∂σ11
∂x1

+ ρg = 0
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Letting σ11 = σx and manipulating the equation yields

σx = −
∫

ρg dx

= −ρgx+ C

At the end of the rope (i.e., x = L), σx = 0.

σx = 0 = −ρgL+ C

So,
C = ρgL

Therefore, the stress in the rope is

σx = −ρg(x− L)

Plugging in the numbers yields
σx = −19620(x− L)

Problem 3.27

Problem Statement

Consider a vertical column of an isothermal atmosphere that obeys the gas laws p/ρ = RT . or
p = ρRT , where ρ is the density of the gas, p is the pressure, R is the gas constant and T is the
absolute pressure. The gas is subject to a gravitational acceleration g so that the body force is ρg
per unit volume, pointing to the ground. If the pressure at the ground level z = 0 is po, determine
the relation between the pressure and the height z above ground.

Solution

The equilibrium equation is given by
σij,j +Xi = 0

Because the properties to not vary in the x or y directions, σ12,2 = σ13,3 = 0. The equilibrium
equation in the z direction, where z is measured positive from the ground up, can be written
as

σ11,1 +X1 = 0

∂σ11
∂z

+X1 = 0

Since stress is positive outward, and pressure is directed inward,

p = −σ11

Also, the body force is the specific weight of the column of fluid.

X1 = −ρg
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The equation becomes

−∂p

∂z
− ρg = 0

Rearranging and inserting the relation for the ideal gas law yields

∂p

∂z
= − p

RT
g

Manipulating further,
∫ p

p0

1

p
dp = −

∫ z

0

g

RT
dz

Evaluating the integrals,

ln(p)− ln(p0) = − gz

RT

ln

(

p

p0

)

= − gz

RT

Raising both sides to the e,
p

p0
= exp

(

− gz

RT

)

Therefore,

p = p0 exp
(

− gz

RT

)

Problem 3.29

Problem Statement

Consider a two-dimensional state of stress in a thin plate in which τzz = τzx = τzy = 0. The
equation of equilibrium acting in the plate in the absence of body force are

∂σx
∂x

+
∂τxy
∂y

= 0

∂τxy
∂x

+
∂σy
∂y

= 0

Show that these equation are satisfied identically if σx, σy, and τxy are derived from an arbitrary
function Φ(x, y) such that

σx =
∂2Φ

∂y2
, σy =

∂2Φ

∂x2
, τxy = − ∂2Φ

∂x∂y
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Solution

This problem is solved by inserting the derivatives of Φ with respect to the coordinates into the
equilibrium equations. For the first equilibrium equation,

∂

∂x

(

∂2Φ

∂y2

)

+
∂

∂y

(

− ∂2Φ

∂x∂y

)

?
= 0

∂3Φ

∂x∂y2
− ∂Φ3

∂x∂y2
X
= 0

For the second equilibrium equation,

∂

∂x

(

− ∂2Φ

∂x∂y

)

+
∂

∂y

(

∂2Φ

∂x2

)

?
= 0

− ∂3Φ

∂x2∂y
+

∂3Φ

∂x2∂y

X
= 0

Therefore, the equations are satisfied.

Problem 2

Problem Statement

Label the stresses given as

σij =

[

−4 −5
−5 1

]

for the following two cases:

x2

x1

(a) Case 1 diagram.

x1

x2

(b) Case 2 diagram.

Solution

ti = σijnj
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For the first case, the components of the traction vector for the upper surface are

t =

[

−4 −5
−5 1

] [

1
0

]

=

[

−4
−5

]

For the right surface,

t =

[

−4 −5
−5 1

] [

0
1

]

=

[

−5
1

]

x2

x1
4

4

1 1

5

5

5 5

Figure 2: Case 1 stresses.

Following the same procedure for part (b) yields

x1

x2
1

1

4 4

5

5

5 5

Figure 3: Case 2 stresses.

Looking at the figures closely, it is evident that part (b) is the same as part (a), with a 90 degree
rotation.
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Problem 2

Problem Statement

For the stress components given as

σij =





1 −3 2
−3 1 −7
2 −7 −2





compute ti, Ni, Si, N and S at (1, 1, 1) on the curved surface given by xyz3 = 1.

Solution

The traction force is computed using the following equation

ti = σijnj

Taking the total derivative of the equation yields

yz3 dx+ xz3 dy + 3xyz2 dz = 0

The above equation can be written as a dot product of two vectors.







yz3

xz3

3xyz2







{

dx dy dz
}

= 0

Evaluating the vector on the left at (1, 1, 1),

n =







1
1
3







However, the normal vector must be normalized so that it is a unit vector.

‖n‖ =
√
1 + 1 + 9 =

√
11

The normalized vector is then

n̂ =
1√
11







1
1
3







The traction vector is then given by

t =





1 −3 2
−3 1 −7
2 −7 −2















1√
11
1√
11
3√
11











t =

{

4√
11

,− 23√
11

,−
√
11

}
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The angle between the traction vector and the normal vector can be found as follows

t · n̂ = |t||n̂| cos θ

θ = cos−1

(

t · n̂
|t||n̂|

)

N = t · n̂ = −51

11

|t| =
√

666

11
and |n̂| = 1

θ = 127.411◦

Ni = N n̂

N =

{

− 52

11
√
11

,− 52

11
√
11

,− 156

11
√
11

}

S = t−N

S =

{

96

11
√
11

,− 201

11
√
11

,
156

11
√
11

−
√
11

}

S =

√

(

156

11
√
11

−
√
11

)2

+
49617

1331

Part II
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ME 5312 - Homework 3
James Grisham

In[92]:= ClearAll@"Global`*"D

Problem 1

In[93]:= rvec = 8x@1D, x@2D, x@3D<;

In[94]:= r = Sqrt@Sum@x@iD^2, 8i, 1, 3<DD;

In[95]:= div@f_D := Sum@D@f@@iDD, x@iDD, 8i, 1, 3<D

In[96]:= div@rvecD

Out[96]= 3

In[97]:= div@r^n * rvecD �� Simplify

Out[97]= H3 + nL Ix@1D2 + x@2D2 + x@3D2Mn�2

In[99]:= curl@f_D :=

Table@Sum@Signature@8i, j, k<D * D@f@@jDD, x@kDD, 8j, 1, 3<, 8k, 1, 3<D, 8i, 1, 3<D

In[100]:= curl@r^n * rvecD

Out[100]= 80, 0, 0<

In[101]:= laplacian@f_D := Sum@D@f, 8x@iD, 2<D, 8i, 1, 3<D

In[102]:= laplacian@r^nD �� FullSimplify

Out[102]= n H1 + nL Ix@1D2 + x@2D2 + x@3D2M-1+
n
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Problem 2

In[103]:= uu = 8u, v, w<;

In[104]:= xx = 8x, y, z<;

In[109]:= Table@Sum@Dt@uu@@iDD, 8xx@@kDD, 2<D, 8k, 1, 3<D , 8i, 1, 3<D

Out[109]= 8Dt@u, 8x, 2<D + Dt@u, 8y, 2<D + Dt@u, 8z, 2<D,
Dt@v, 8x, 2<D + Dt@v, 8y, 2<D + Dt@v, 8z, 2<D, Dt@w, 8x, 2<D + Dt@w, 8y, 2<D + Dt@w, 8z, 2<D<
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In[112]:= Table@Sum@Dt@Dt@uu@@kDD, xx@@kDDD, xx@@iDDD, 8k, 1, 3<D, 8i, 1, 3<D

Out[112]= 8Dt@u, 8x, 2<D + Dt@v, x, yD + Dt@w, x, zD,
Dt@v, 8y, 2<D + Dt@u, x, yD + Dt@w, y, zD, Dt@w, 8z, 2<D + Dt@u, x, zD + Dt@v, y, zD<

In[117]:= Table@G * HSum@Dt@uu@@iDD, 8xx@@kDD, 2<D, 8k, 1, 3<D +

1 � H1 - 2 * ΝL * Sum@Dt@Dt@uu@@kDD, xx@@kDDD, xx@@iDDD, 8k, 1, 3<DL +

X@iD == Ρ * Dt@uu@@iDD, 8t, 2<D, 8i, 1, 3<D

Out[117]= :G Dt@u, 8x, 2<D + Dt@u, 8y, 2<D + Dt@u, 8z, 2<D + Dt@u, 8x, 2<D + Dt@v, x, yD + Dt@w, x, zD
1 - 2 Ν

+

X@1D � Ρ Dt@u, 8t, 2<D, G Dt@v, 8x, 2<D + Dt@v, 8y, 2<D + Dt@v, 8z, 2<D +
Dt@v, 8y, 2<D + Dt@u, x, yD + Dt@w, y, zD

1 - 2 Ν
+ X@2D � Ρ Dt@v, 8t, 2<D,

G Dt@w, 8x, 2<D + Dt@w, 8y, 2<D + Dt@w, 8z, 2<D + Dt@w, 8z, 2<D + Dt@u, x, zD + Dt@v, y, zD
1 - 2 Ν

+

X@3D � Ρ Dt@w, 8t, 2<D>
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