AE 5331: Analytic Methods Engineering Homework 1

James Grisham

September 29, 2014

Problem 1

Problem Statement

Determine the following limits:

(a)
$$\lim_{x \to 0} \frac{\sin x}{x}$$

(b)
$$\lim_{x \to 0} \frac{\sin(2x)}{x}$$

(c)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

(d)
$$\lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^x$$

Solution

Part A

Applying the limit directly yields

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \frac{0}{0}$$

which is indeterminate. Therefore, this problem is a candidate for l'Hopital's rule.

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\frac{d}{dx} (\sin(x))}{\frac{d}{dx} (x)} = \lim_{x \to 0} \cos(x)$$

Therefore,

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Part B

Applying the limit directly yields

$$\lim_{x \to 0} \frac{\sin(2x)}{x} = \frac{0}{0}$$

Therefore, this problem is a candidate for l'Hopital's rule.

$$\lim_{x \to 0} \frac{\sin(2x)}{x} = \lim_{x \to 0} 2\cos(2x)$$
$$\lim_{x \to 0} \frac{\sin(2x)}{x} = 2$$

Part C

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} e^{x \ln\left(1 + \frac{1}{x}\right)}$$

Because e is constant, we will look at the limit of the power first.

$$\lim_{x \to \infty} x \ln\left(1 + \frac{1}{x}\right) = \lim_{x \to \infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}} = \frac{\ln(1)}{0} = \frac{0}{0}$$

which is indeterminate. So, this problem is a candidate for l'Hopital's rule.

$$\lim_{x \to \infty} x \ln \left(1 + \frac{1}{x} \right) = \lim_{x \to \infty} \frac{\frac{1}{1 + \frac{1}{x}} (-x^{-2})}{-x^{-2}} = \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}} = 1$$

Therefore,

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Part D

Using the same approach as before,

$$\lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^x = e^{x \ln(1 - \frac{1}{x})}$$

Again, since e is a constant, we can apply the limit to the exponent.

$$\lim_{x \to \infty} x \ln\left(1 - \frac{1}{x}\right) = \lim_{x \to \infty} \frac{\ln\left(1 - \frac{1}{x}\right)}{\frac{1}{x}} = \frac{0}{0}$$

Therefore, this problem is a candidate for l'Hoptial's rule.

$$\lim_{x \to \infty} x \ln \left(1 - \frac{1}{x} \right) = \lim_{x \to \infty} \frac{\frac{1}{1 - \frac{1}{x}} (x^{-2})}{-x^{-2}} = \lim_{x \to \infty} \frac{-1}{1 - \frac{1}{x}} = -1$$

So, the limit is

$$\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x = \frac{1}{e}$$

Problem 2

Problem Statement

Examine continuity and differentiability of the following functions at x = 0:

(a)
$$f(x) = \begin{cases} \sin(x), & x < 0 \\ x, & x \geqslant 0 \end{cases}$$

(b)
$$f(x) = |\sin(x)|$$

(c)
$$f(x) = \begin{cases} x^2, & x \geqslant 0 \\ -x, & x < 0 \end{cases}$$

Solution

Part A

According to the definition of continuity, a function f(x) is continuous at $x = x_0$ if

$$\lim_{x \to x_0} f(x) = f(x_0)$$

For differentiability, we must show that

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists. The value of $f(x_0)$ is

$$f(x_0) = f(0) = 0$$

Applying the limit from the left,

$$\lim_{x \to 0^-} \sin(x) = 0$$

From the right,

$$\lim_{x \to 0^+} x = 0$$

Since the limits approach f(0), the function is continuous. Now, checking for differentiability from the left,

$$\lim_{h \to 0^{-}} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{\sin(h)}{h} = \frac{0}{0}$$

Applying l'Hopital's rule,

$$\lim_{h\to 0^-}\frac{\sin(h)}{h}=\lim_{h\to 0^-}\cos(h)=1$$

From the right,

$$\lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1$$

Therefore, the function is both, continuous and differentiable about x=0.

Part B

The function is

$$f(x) = |\sin(x)|$$

Testing for continuity,

$$\lim_{x \to 0} |\sin(x)| = 0$$

This applies to the limit from either side. Both are equal to zero. Testing for differentiability from the left,

$$\lim_{h \to 0^{-}} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{-\sin(h) + \sin(0)}{h} = \lim_{h \to 0} \frac{-\sin(h)}{h} = -1$$

From the right,

$$\lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^+} \frac{\sin(h) - \sin(0)}{h} = \lim_{h \to 0^+} \frac{\sin(h)}{h} = 1$$

Therefore, the function is continuous, but not differentiable.

Part C

$$f(x) = \begin{cases} x^2, & x \geqslant 0 \\ -x, & x < 0 \end{cases}$$

Testing for continuity from the left,

$$\lim_{x \to 0^-} (-x) = 0$$

From the right,

$$\lim_{x \to 0^+} x^2 = 0$$

Therefore, the function is continuous. Testing for differentiability from the right:

$$\lim_{h \to 0^{-}} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{h^{2}}{h} = 0$$

Testing for differentiability from the left,

$$\lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^+} \frac{-h}{h} = -1$$

Therefore, the function is continuous, but not differentiable.

Problem 3

Problem Statement

Determine whether the series in "More examples" and "Exercise of infinite series" of Lecture 3 (whose notes are available on the course website) are convergent or divergent, and prove it. Note: if a problem appears twice, you only need to solve it once.

The series are:

(a)
$$\sum_{n=1}^{\infty} (n+3)^{-3/2}$$

(f)
$$\sum_{n=1}^{\infty} \left(\frac{\cos(n)}{2n-1} \right)^2$$

(k)
$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 2n - 1}{n^4 + 3} \right)^{\frac{3}{2}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 3\ln(n)}$$

(g)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

(l)
$$\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{1}{\sqrt{n}} \right)$$

(c)
$$\sum_{n=1}^{\infty} n^{-100}$$

(h)
$$\sum_{n=1}^{\infty} \frac{n + (\cos(n))^2}{n^2 + 4}$$

(m)
$$\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$$

$$(d) \sum_{n=1}^{\infty} \left(1 + \frac{1}{n^2} \right)$$

(i)
$$\sum_{n=1}^{\infty} e^{-nx}$$

(n)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$$

(e)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+10} \right)$$

(j)
$$\sum_{n=1}^{\infty} \ln \left(2 + \frac{2}{n} \right)$$

(o)
$$\sum_{n=1}^{\infty} \ln \left(\frac{n^2 - 1}{n^2 + 1} \right)$$

Solution

Part A

The series is

$$\sum_{n=1}^{\infty} (n+3)^{-3/2}$$

Convergence of this series can be determined using the comparison test.

Comparison Test Let $\sum a_n$ be a series with no negative terms.

- (a) $\sum a_n$ converges if there is a convergent series $\sum b_n$ with $a_n \leq b_n$ for all n > N, for some integer N.
- (b) $\sum a_n$ diverges if there is a divergent series of nonnegative terms $\sum c_n$ with $a_n \ge c_n$ for all n > N, for some integer N.

Letting

$$a_n = \frac{1}{(n+3)^{3/2}}$$
 and $b_n = \frac{1}{n^{3/2}}$

The first sequence a_n is always less than b_n because of the added constant in the denominator. Therefore,

$$a_n \leqslant b_n$$

 $\sum b_n$ corresponds to a *p*-series with p > 1. Therefore, $\sum b_n$ is convergent. Since $\sum b_n$ is convergent, by the comparison test, a_n must also be a convergent series.

Part B

$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 3\ln(n)}$$

In this case, the limit comparison test will be used.

Limit Comparison Test Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (where N is an integer).

1. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.

2. If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.

3. If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Let

$$a_n = \frac{n}{n^2 + 3\ln(n)}$$

and

$$b_n = \frac{1}{n}$$

Evaluating the limit yields

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{n}{n^2 + 3\ln(n)}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^2}{n^2 + 3\ln(n)} = \lim_{n \to \infty} \frac{1}{1 + \frac{3\ln(n)}{n^2}}$$

Looking at the limit of the second term in the denominator more closely,

$$\lim_{n \to \infty} \frac{3\ln(n)}{n^2} = \frac{\infty}{\infty}$$

which is indeterminate. Therefore, this limit is a candidate for l'Hopital's rule.

$$\lim_{n \to \infty} \frac{3\ln(n)}{n^2} = \lim_{n \to \infty} \frac{3}{2n^2} = 0$$

Therefore,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 1 \tag{1}$$

Because the value of the limit in (1) is greater than zero and finite, $\sum a_n$ and $\sum b_n$ either both converge or both diverge. Because we already know that b_n diverges (it is a power series with p=1), $\sum a_n$ must also diverge.

Part C

$$\sum_{n=1}^{\infty} n^{-100}$$

This series is a p-series with p = 100. Therefore, the series is convergent.

Part D

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n^2} \right)$$

Letting

$$a_n = 1 + \frac{1}{n^2}$$

and

$$b_n = \frac{1}{n^0}$$

where $\sum b_n$ is a divergent *p*-series. The first series $(\sum a_n)$ will always be greater than the second series $(\sum b_n)$. Therefore, by the comparison test, this series diverges.

Part E

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+10} \right) = \sum_{n=1}^{\infty} \frac{10}{n^2 + 10n}$$

Letting

$$a_n = \frac{10}{n^2 + 10n}$$

and

$$b_n = \frac{1}{n^2}$$

where b_n is a convergent p-series. Using the limit comparison test,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{10}{n^2 + 10n}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{10}{1 + \frac{10}{n}} = 10$$

Since

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$$

two situations are possible: (1) $\sum a_n$ and $\sum b_n$ both converge or (2) $\sum a_n$ and $\sum b_n$ both diverge. Since we know that $\sum b_n$ is a convergent *p*-series, $\sum a_n$ must also be convergent.

Part F

$$\sum_{n=1}^{\infty} \left(\frac{\cos(n)}{2n-1} \right)^2$$

Letting

$$a_n = \left(\frac{\cos(n)}{2n-1}\right)^2$$

and

$$b_n = \frac{1}{n^2}$$

where $\sum b_n$ is a convergent p-series, and applying the limit comparison test,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\left(\frac{\cos(n)}{2n-1}\right)^2}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2 \cos^2(n)}{4n^2 - 4n + 1} = \lim_{n \to \infty} \frac{\cos^2(n)}{4 - \frac{4}{n} + \frac{1}{n^2}}$$
(2)

The final limit in (2) could be anything from 0 to 1/4 (because of the $\cos^2(n)$ term). Since $\sum b_n$ is a convergent series, and since a_n is either equal to zero or greater than zero, a_n must also be a convergent series.

Part G

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

The convergence of this series can be determined using the alternating series test.

Alternating series Test The series

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \dots$$

converges if all three of the following conditions are satisfied:

- 1. The u_n 's are all positive.
- 2. $u_n \geqslant u_{n+1}$ for all $n \geqslant N$, for some integer N.
- 3. $u_n \to 0$.

In this case,

$$u_n = \frac{1}{n}$$

So, the first condition is satisfied. Now, the second condition (with N=1):

$$u_n \stackrel{?}{\geqslant} u_{n+1} \ \forall \ n \geqslant N$$

$$\frac{1}{n} \not \geqslant \frac{1}{n+1}$$

Therefore, the second condition is also satisfied.

$$u_n \to 0 \text{ as } n \to \infty$$
?

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Therefore, all three conditions of the alternating series test are met and the series is convergent.

Part H

$$\sum_{n=1}^{\infty} \frac{n + \cos^2(n)}{n^2 + 4}$$

Letting

$$a_n = \frac{n + \cos^2(n)}{n^2 + 4}$$

and

$$b_n = \frac{1}{n}$$

where $\sum b_n$ is a Harmonic series (divergent), and applying the limit comparison test,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{n + \cos^2(n)}{n^2 + 4}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^2 + n \cos^2(n)}{n^2 + 4} = \lim_{n \to \infty} \frac{1 + \frac{\cos^2(n)}{n}}{1 + \frac{4}{n^2}} = 1$$

Since

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0,$$

 $\sum a_n$ and $\sum b_n$ either both converge or both diverge. Since $\sum b_n$ is a divergent series, $\sum a_n$ must also be a divergent series.

Part I

$$\sum_{n=1}^{\infty} e^{-nx}$$

This is a geometric series. In general, a geometric series can be written as

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}, \quad |r| < 1 \tag{3}$$

If $|e^{-x}| < 1$, or equivalently, $|e^x| > 1$, the series converges to

$$\sum_{n=1}^{\infty} (e^{-x})^n = \frac{1}{1 - e^{-x}} - 1 \tag{4}$$

where the -1 was added to account for the different indices in (3) and (4).

Part J

$$\sum_{n=1}^{\infty} \ln \left(2 + \frac{2}{n} \right)$$

This series diverges. Divergence can be proved using the n-th term test.

nth-Term Test for Divergence $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{n\to\infty} a_n$ fails to exist or is different from zero.

$$\lim_{n\to\infty} \ln\left(2 + \frac{2}{n}\right) = \ln(2) \neq 0$$

Therefore, this series diverges.

Part K

$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 2n - 1}{n^4 + 3} \right)^{\frac{3}{2}}$$

Convergence can be determined using the limit comparison test. Letting

$$a_n = \left(\frac{n^2 + 2n - 1}{n^4 + 3}\right)^{\frac{3}{2}}$$

and

$$b_n = \frac{1}{n^3}$$

where Σb_n is a convergent p-series, and applying the limit

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\left(\frac{n^2 + 2n - 1}{n^4 + 3}\right)^{\frac{3}{2}}}{\frac{1}{n^3}} = \lim_{n \to \infty} \frac{\left(\frac{n^2 + 2n - 1}{n^4 + 3}\right)^{\frac{3}{2}}}{\left(\left(\frac{1}{n^3}\right)^{\frac{2}{3}}\right)^{\frac{3}{2}}} = \lim_{n \to \infty} \left(\frac{n^4 + 2n^3 - n^2}{n^4 + 3}\right)^{\frac{3}{2}}$$

$$\lim_{n \to \infty} \left(\frac{n^4 + 2n^3 - n^2}{n^4 + 3} \right)^{\frac{3}{2}} = \lim_{n \to \infty} \left(\frac{1 + \frac{2}{n} - \frac{1}{n^2}}{1 + \frac{3}{n^4}} \right)^{\frac{3}{2}} = 1$$

Therefore, Σa_n and Σb_n either both converge or both diverge. Since we already know that Σb_n is a convergent *p*-series, we can say that Σa_n must also be a convergent series.

Part L

$$\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{1}{\sqrt{n}} \right)$$

The convergence of this series can be determined using the alternating series test. In this case,

$$u_n = \ln\left(1 + \frac{1}{\sqrt{n}}\right)$$

The first condition is that all of the u_n s are positive. This condition is satisfied because the argument of the natural log function is always greater than or equal to one.

The second condition is that

$$u_n \geqslant u_{n+1} \ \forall \ n \geqslant N$$

where N is just some integer. As n increases, the argument of the natural log decreases. Therefore, u_n decrease. Thus, the second condition is satisfied.

The third condition requires that

$$\lim_{n\to\infty}u_n\to 0$$

Applying this,

$$\lim_{n \to \infty} \ln\left(1 + \frac{1}{\sqrt{n}}\right) = 0$$

Because all three conditions are met, the series is convergent.

Part M

$$\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$$

The convergence of this series can be determined using the limit comparison test. Letting

$$a_n = \frac{1}{x^2 + n^2}$$

and

$$b_n = \frac{1}{n^2}$$

where Σb_n is a convergent p-series, and applying the limit,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\frac{1}{x^2 + n^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{1}{\frac{x^2}{n^2} + 1} = 1$$

Therefore, as long as x is finite, either both Σa_n and Σb_n converge or diverge. Since we know that Σb_n is a convergent p-series, Σa_n must also be a convergent series.

Part N

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$$

The convergence of this series can be determined using the alternating series test with

$$u_n = \frac{1}{2^n}$$

The first condition requires that all values of u_n are positive. This condition is satisfied.

The second condition requires

$$u_n \geqslant u_{n+1} \ \forall n \geqslant N$$

where N is some integer. This condition is also satisfied.

$$\frac{1}{2^n} \geqslant \frac{1}{2^{n+1}} \Rightarrow 2 \geqslant 1$$

The third condition requires that $u_n \to 0$.

$$\lim_{n\to\infty}\frac{1}{2^n}=0$$

Therefore, the series is convergent.

Part O

$$\sum_{n=1}^{\infty} \ln \left(\frac{n^2 - 1}{n^2 + 1} \right) = \sum_{n=1}^{\infty} \left[\ln \left(1 - \frac{1}{n^2} \right) - \ln \left(1 + \frac{1}{n^2} \right) \right] = \sum_{n=1}^{\infty} \ln \left(1 - \frac{1}{n^2} \right) - \sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^2} \right) = \sum_{n=1}^{\infty} \ln \left(1 - \frac{1}{n^2} \right) - \sum_{n=1}^{\infty} \ln \left(1 - \frac{1}{n^2} \right) = \sum_{n=1}^{\infty} \ln \left(1 - \frac{1}{n^$$

Simplifying further,

$$\sum_{n=1}^{\infty} \ln\left(1 - \frac{1}{n^2}\right) - \sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n^2}\right) = \sum_{n=1}^{\infty} \ln\left(1 - \frac{1}{n^2}\right) + \sum_{n=1}^{\infty} \ln\left(\frac{n^2}{n^2 + 1}\right)$$

Both of the series are convergent. The sum of two convergent series is a convergent series. Therefore, the series is convergent.

Exercises 13.4

Problem 1

Let $f(x,y) = \sin(x^4 + 3y)$, where x = 5t and $y = t^2 + 1$, and denote f(x(t), y(t)) = F(t). Evaluate dF/dt using the chain rule,

$$\frac{dF}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

NOTE: Actually, the above equation is not the end of the "chain differentiation story," for in computing $\partial f/\partial x$, we set $x^4 + 3y = u$, so that, again applying chain differentiation,

$$\frac{\partial f}{\partial x} = \frac{d}{du}(\sin u)\frac{\partial u}{\partial x} = \text{etc.}$$

and similarly for $\partial f/\partial y$.

$$\frac{\partial f}{\partial x} = \cos(x^4 + 3y)(4x^3)$$
$$\frac{\partial f}{\partial y} = \cos(x^4 + 3y)(3)$$
$$\frac{dx}{dt} = 5$$
$$\frac{dy}{dt} = 2t$$

Therefore,

$$\frac{dF}{dt} = 20(5t)^3 \cos((5t)^4 + 3(t^2 + 1)) + 6t \cos((5t)^4 + 3(t^2 + 1))$$

Simplifying further,

$$\frac{dF}{dt} = (2500t^3 + 6t)\cos(625t^4 + 3t^2 + 3)$$

Problem 2(b)

Let $f(x,y) = e^{xy}$, and denote f(x(t),y(t)) = F(t). Evaluate dF/dt in each case, using the chain rule.

$$x(t) = \sqrt{t+1}$$
$$y(t) = \cos(t)$$

The chain rule is

$$\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$
$$\frac{\partial f}{\partial x} = ye^{xy}$$
$$\frac{\partial f}{\partial y} = xe^{xy}$$
$$\frac{dx}{dt} = \frac{1}{2}(t+1)^{-1/2}$$
$$\frac{dy}{dt} = -\sin(t)$$

Therefore,

$$\frac{dF}{dt} = \cos(t)e^{\sqrt{t+1}\cos(t)} \frac{1}{2\sqrt{t+1}} - \sqrt{t+1}e^{\sqrt{t+1}\cos(t)}\sin(t)$$
$$\frac{dF}{dt} = \left[\frac{\cos(t)}{2\sqrt{t+1}} - \sqrt{t+1}\sin(t)\right]e^{\sqrt{t+1}\cos(t)}$$

Problem 2(d)

$$x(t) = \ln(t)$$
$$y(t) = t$$

Therefore,

$$\frac{dx}{dt} = \frac{1}{t}$$
$$\frac{dy}{dt} = 1$$

Now,

$$\frac{dF}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Thus,

$$\frac{dF}{dt} = e^{t \ln(t)} \left(1 + \ln(t) \right)$$

However,

$$e^{t\ln(t)} = e^{\ln(t^t)} = t^t$$

Using this,

$$\frac{dF}{dt} = t^t \left(1 + \ln(t) \right)$$

Problem 2(f)

$$x(t) = 3t - 1$$
$$y(t) = 2t + 5$$

$$\frac{dx}{dt} = 3$$

$$\frac{dy}{dt} = 2$$

$$\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

Inserting the derivatives into the chain rule and simplifying yields

$$\frac{dF}{dt} = (12t + 13)e^{6t^2 + 13t - 5}$$

Exercises 13.5

Problem 1

Expand the given function about the indicated point a, through third order terms. NOTE: $(x-a)^n$ is of nth order.

The general equation for the Taylor series of a function of one variable is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Expanding through third order terms yields

$$f(x)|_{x=a} \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \frac{f'''(a)}{6}(x-a)^3$$

0.0.1 Part a

$$f(x) = e^{-2x} \text{ about } a = 0$$

$$f'(x) = -2e^{-2x}$$

$$f''(x) = 4e^{-2x}$$

$$f'''(x) = -8e^{-2x}$$

Thus, the expansion about x = 0 is

$$e^{-2x}|_0 \approx 1 - 2x + 2x^2 - \frac{4}{3}x^3$$

Part b

$$f(x) = e^{-2x} \text{ about } a = 5$$

$$f'(x) = -2e^{-2x}$$

$$f''(x) = 4e^{-2x}$$

$$f'''(x) = -8e^{-2x}$$

Thus, the expansion about x = 5 is

$$e^{-2x}|_{5} \approx e^{-10} \left(1 - 2(x-5) + 2(x-5)^{2} - \frac{4}{3}(x-5)^{3} \right)$$

Part c

$$f(x) = e^{-2x}$$
 about $a = -3$
 $f'(x) = -2e^{-2x}$
 $f''(x) = 4e^{-2x}$
 $f'''(x) = -8e^{-2x}$

Thus, the expansion about x = -3 is

$$e^{-2x}|_{-3} \approx e^{6} \left(1 - 2(x+3) + 2(x+3)^{2} - \frac{4}{3}(x+3)^{3} \right)$$

Part d

$$f(x) = \ln(x)$$
 about $a = 2$

$$f'(x) = \frac{1}{x}$$

$$f''(x) = -\frac{1}{x^2}$$

$$f'''(x) = \frac{2}{x^3}$$

Thus, the expansion about x = 2 is

$$\ln(x)|_2 \approx \ln(2) + \frac{1}{2}(x-2) - \frac{1}{8}(x-2)^2 + \frac{1}{24}(x-2)^3$$

Part e

$$f(x) = \frac{1}{1+x^2}$$
 about $a = 1$

$$f'(x) = -2x(1+x^2)^{-2}$$

$$f''(x) = 8x^2(1+x^2)^{-3} - 2(1+x^2)^{-2}$$

$$f'''(x) = -48x^3(1+x^2)^{-4} + 24x(1+x^2)^{-3}$$

Thus, the expansion about x = 1 is

$$\left| \frac{1}{1+x^2} \right|_1 \approx \frac{1}{2} - \frac{x-1}{2} + \frac{(x-1)^2}{4}$$

The third order term is zero because f'''(1) = 0.

Part f

$$f(x) = \frac{1}{1+x^2} \text{ about } a = -1$$

$$f'(x) = -2x(1+x^2)^{-2}$$

$$f''(x) = 8x^2(1+x^2)^{-3} - 2(1+x^2)^{-2}$$

$$f'''(x) = -48x^3(1+x^2)^{-4} + 24x(1+x^2)^{-3}$$

Thus, the expansion about x = -1 is

$$\left[\frac{1}{1+x^2} \right|_{-1} \approx \frac{1}{2} + \frac{x+1}{2} + \frac{(x+1)^2}{4}$$

The third order term is zero because f'''(1) = 0.

Part g

$$f(x) = \sin(x)$$
 about $a = 2$

$$f'(x) = \cos(x)$$
$$f''(x) = -\sin(x)$$

$$f'''(x) = -\cos(x)$$

Thus, the expansion about x = 2 is

$$\sin(x)|_2 \approx \sin(2) + (x-2)\cos(2) - \frac{(x-2)^2}{2}\sin(2) - \frac{(x-2)^3}{6}\cos(2)$$

Part h

$$f(x) = \cos(2x) \text{ about } a = \pi$$

$$f'(x) = -2\sin(2x)$$

$$f''(x) = -4\cos(2x)$$

$$f'''(x) = 8\sin(2x)$$

Thus, the expansion about $x = \pi$ is

$$\cos(2x)|_{\pi} \approx 1 - 2(x - \pi)^2$$

Part i

$$f(x) = x(x-1)^2 = x^3 - 2x^2 + x \text{ about } a = 1$$
$$f'(x) = 3x^2 - 4x + 1$$
$$f''(x) = 6x - 4$$
$$f'''(x) = 6$$

Thus, the expansion about x = 1 is

$$x(x-1)^2|_1 \approx (x-1)^2 + (x-1)^3$$

Simplifying this equation yields the original equation.

Part j

$$f(x) = x^{3}(x^{4} - 1) + 5 = x^{7} - x^{3} + 5 \text{ about } a = 0$$

$$f'(x) = 7x^{6} - 3x^{2}$$

$$f''(x) = 42x^{5} - 6x$$

$$f'''(x) = 210x^{4} - 6$$

Thus, the expansion about x = 0 is

$$x^3(x^4-1) + 5|_0 \approx 5 - x^3$$

Problem 2(b)

Obtain the first four nonvanishing terms in the Taylor series of the given function about x=0.

$$f(x) = \frac{1}{2 + x^{10}}$$

The general equation for a Taylor series is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Solving this problem requires a lot of differentiation. The problem was solved with the help of a CAS, specifically, SymPy. The first derivative is

$$f'(x) = -\frac{10x^9}{(x^{10} + 2)^2}$$

However, f'(0) = 0 which means that the first order term vanishes. In fact, all the terms vanish until the 10th order term which is

$$f^{(10)}(0) = -907200$$

The symbolic expression was too large to fit on the page. The next derivative that is nonzero is the 20th order derivative which is

$$f^{(20)}(0) = 304112751022080000$$

and so on up until 30th order terms. Thus, the Taylor series expansion about x=0 is given by

$$\boxed{\frac{1}{2+x^{10}}\Big|_{0} = \frac{1}{2} - \frac{x^{10}}{4} + \frac{x^{20}}{8} - \frac{x^{30}}{16} + \mathcal{O}\left(x^{40}\right)}$$

Problem 2(d)

The function given in this problem is

$$f(x) = \cos(x^{20})$$

$$f'(x) = -20x^{19} \sin(x^{20})$$

$$f''(x) = -20x^{18} \left(20x^{20} \cos(x^{20}) + 19\sin(x^{20})\right)$$

$$f'''(x) = 40x^{17} \left(200x^{40} \sin(x^{20}) - 570x^{20} \cos(x^{20}) - 171\sin(x^{20})\right)$$

$$\vdots \qquad \qquad \vdots$$

All of the derivatives evaluated at x = 0 are zero up until the 40^{th} order term. Continuing the differentiation until four nonvanishing terms are found yields the following:

$$\cos(x^{20})|_{0} = 1 - \frac{x^{40}}{2} + \frac{x^{80}}{24} - \frac{x^{120}}{720} + \mathcal{O}\left(x^{138}\right)$$

Exercises 13.6

Problem 1(b)

Given f(x,y) = 0 and a point (x_0, y_0) such that $f(x_0, y_0) = 0$, see if the conditions of Theorem 13.6.1 are met. If so, develop the implicit function y(x) in a Taylor series about x_0 , through second order terms, as we did in Example 4.

Theorem 13.6.1 Implicit Function Theorem

Let f(x,y) = 0 be satisfied by a pair of real numbers x_0 , y_0 so that $f(x_0, y_0) = 0$, and suppose that f(x,y) is C^1 in some neighborhood of (x_0, y_0) with

$$\frac{\partial f(x_0, y_0)}{\partial y} \neq 0$$

Then f(x,y) = 0 uniquely implies a function y(x) in some neighborhood N of x_0 such that $y(x_0) = y_0$, where y(x) is differentiable in N. The function f(x,y) being C^1 means that the first-order partial derivatives f_x and f_y are continuous. Also, the neighborhood N of x_0 is an open interval on the x-axis, whereas the neighborhood of (x_0, y_0) is an open disk in the x, y plane.

For this problem,

$$f(x,y) = x^2 + 4y^2 - 4 = 0;$$
 $(x_0, y_0) = (0, 1)$

The implicit function y(x) exists if $f_y(x_0, y_0) \neq 0$. So,

$$f_y = 8y$$

and

$$f_y(0,1) = 8 \neq 0$$

Therefore, the implicit function exists.

To find the implict function using a Taylor series through second order terms, the first and second order derivatives of the implicit function must be determined. The first and second derivatives are given by

$$y'(x) = -\frac{f_x(x, y(x))}{f_y(x, y(x))}$$
$$y''(x) = \frac{2f_x f_y f_{xy} - f_x^2 f_{yy} - f_y^2 f_{xx}}{f_y^3}$$

The derivatives are

$$f_x = 2x$$

$$f_{xx} = 2$$

$$f_y = 8y$$

$$f_{yy} = 8$$

$$f_{xy} = 0$$

Thus,

$$y'(x) = -\frac{x}{4y}$$

and

$$y''(x) = -\frac{x^2 + 4y^2}{16y^3}$$

The Taylor series expansion of the implicit function about (x_0, y_0) is

$$y(x) = y(x_0) + y'(x_0)(x - x_0) + \frac{y''(x_0)}{2}(x - x_0)^2 + \dots$$

The value $y(x_0)$ is determined by evaluating f(x, y) at x_0 .

$$y(x_0) = 1$$

Evaluating $y'(x_0)$ yields

$$y'(x_0) = 0$$

Next, $y''(x_0)$,

$$y''(x_0) = -\frac{1}{8}$$

Therefore, the Taylor series expansion is

$$y(x) \approx 1 - \frac{1}{16}x^2$$

Problem 1(e)

$$f(x,y) = x(\cos(\pi y) + 1) + (x^3 + 8)y = 0;$$
 (-2,1)

The implicit function exists if $f_y(x_0, y_0) \neq 0$.

$$f_y = x^3 - \pi x \sin(\pi y) + 8$$

and

$$f_y(-2,1) = 0$$

Therefore, the implicit function does not exist.

Problem 1(g)

$$f(x,y) = x - y + \sin(y) = 0$$

The partial of f wrt y is

$$f_y = \cos(y) - 1$$

$$f_y(0,0) = \cos(0) - 1 = 0$$

Therefore, the implicit function does not exist.

Problem 2(a)

In each case, find y'(x) and y''(x).

$$f(x,y) = xy - y^3 = 1$$

which can be rewritten as

$$f(x,y) = xy - y^3 - 1 = 0$$

The derivatives are

$$f_x = y$$

$$f_{xx} = 0$$

$$f_y = x - 3y^2$$

$$f_{yy} = -6y$$

$$f_{xy} = 1$$

Now, y'(x) and y''(x) are

$$y'(x) = -\frac{f_x}{f_y} \tag{5}$$

$$y''(x) = \frac{2f_x f_y f_{xy} - f_x^2 f_{yy} - f_y^2 f_{xx}}{f_y^3}$$
 (6)

Inserting the derivatives and simplifying yields

$$y'(x) = -\frac{y}{x - 3y^2}$$
$$y''(x) = \frac{2xy}{(x - 3y^2)^3}$$

Alternatively, this problem can be solved using direct implicit differentiation. For example, the first derivative is

$$xy' + y - 3y^2y' = 0$$

Solving for y' yields

$$y'(x) = -\frac{y}{x - 3y^2}$$

which is the same as the previous answer. The same holds for the second derivative.

Problem 2(f)

$$f(x,y) = y\cos(y) - x^3 = 0$$

The derivatives are

$$f_x = -3x^2$$

$$f_{xx} = -6x$$

$$f_y = -y\sin(y) + \cos(y)$$

$$f_{yy} = -y\cos(y) + 2\sin(y)$$

$$f_{xy} = 0$$

Inserting these derivatives into (5) and (6),

$$y'(x) = -\frac{3x^2}{y\sin(y) - \cos(y)}$$
$$y''(x) = -\frac{3x}{(y\sin(y) - \cos(y))^3} \left(3x^3 (y\cos(y) + 2\sin(y)) + 2(y\sin(y) - \cos(y))^2\right)$$

Exercises 13.7

Problem 1(b)

The given function has a critical point at x = 1. Classify it as a local maximum, local minimum or horizontal inflection point.

$$f(x) = 3(x-1)^4 + 5$$

This problem can be solved using Theorem 13.7.2 from the text.

Theorem 13.7.2 Maximum, Minimum Horizontal Inflection Point Suppose that

$$f'(x) = f''(x) = \dots = f^{(n-1)}(x) = 0,$$

but $f^{(n)}(x) \neq 0$, and that $f^{(n)}(x)$ is continuous in some neighborhood of x, where $n \geq 2$. If n is even and $f^{(n)}(x) < 0$, then f has a local maximum at x. If n is even and $f^{(n)}(x) > 0$, then f has a local minimum at x. If n is odd, then f has a horizontal inflection point at x.

Differentiating f(x) and evaluating at x = 1 yields

$$f'(x) = 12x^{3} - 36x^{2} + 36x - 12$$

$$f'(1) = 0$$

$$f''(x) = 36x^{2} - 72x + 36$$

$$f''(1) = 36 - 72 + 36 = 0$$

$$f'''(x) = 72x - 72$$

$$f'''(1) = 0$$

$$f^{(4)}(x) = 72$$

$$f^{(4)}(1) = 72$$

Because n is even, and $f^{(n)}(x) > 0$, f(x) has a local minimum at x = 1.

Problem 1(d)

$$f(x) = (x+1)(x-3)(1-x)^3$$

Taking derivatives and evaluating them at x = 1 yields

$$f'(x) = -5x^4 + 20x^3 - 18x^2 - 4x + 7$$

$$f'(1) = 0$$

$$f''(x) = -20x^3 + 60x^2 - 36x - 4$$

$$f''(1) = 0$$

$$f'''(x) = -60x^2 + 120x - 36$$

$$f'''(1) = 24$$

Because n is odd, f(x) has a horizontal inflection point at x = 1.

Problem 1(f)

$$f(x) = \exp[8(x-1)^5]$$

Taking derivatives and evaluating them at x = 1 yields

$$f'(x) = 40 (x - 1)^4 e^{8(x - 1)^5}$$

$$f'(1) = 0$$

$$f''(x) = 160 (x - 1)^3 \left(10 (x - 1)^5 + 1\right) e^{8(x - 1)^5}$$

$$f''(1) = 0$$

$$f'''(x) = 160 (x - 1)^2 \left(400 (x - 1)^{10} + 120 (x - 1)^5 + 3\right) e^{8(x - 1)^5}$$

$$f'''(1) = 0$$

$$f^{(4)}(x) = 320 (x - 1) \left(8000 (x - 1)^{15} + 4800 (x - 1)^{10} + 480 (x - 1)^5 + 3\right) e^{8(x - 1)^5}$$

$$f^{(4)}(1) = 0$$

$$f^{(5)}(x) = 320 \left(320000 (x - 1)^{20} + 320000 (x - 1)^{15} + 72000 (x - 1)^{10} + 3000 (x - 1)^5 + 3\right) e^{8(x - 1)^5}$$

$$f^{(5)}(1) = 960$$

Since n is odd, f(x) has a horizontal inflection point at x = 1.

Problem 1(g)

$$f(x) = (1 - x)\sin[(x^2 - 1)^3]$$

Taking derivatives and evaluating them at x = 1 yields

$$f'(x) = 6x (-x+1) (x^2-1)^2 \cos ((x^2-1)^3) - \sin ((x^2-1)^3)$$

$$f'(1) = 0$$

$$f''(x) = 36x^{11} \sin (x^6 - 3x^4 + 3x^2 - 1) - 36x^{10} \sin (x^6 - 3x^4 + 3x^2 - 1)$$

$$- 144x^9 \sin (x^6 - 3x^4 + 3x^2 - 1) + 144x^8 \sin (x^6 - 3x^4 + 3x^2 - 1)$$

$$+ 216x^7 \sin (x^6 - 3x^4 + 3x^2 - 1) - 216x^6 \sin (x^6 - 3x^4 + 3x^2 - 1)$$

$$- 144x^5 \sin (x^6 - 3x^4 + 3x^2 - 1) - 42x^5 \cos (x^6 - 3x^4 + 3x^2 - 1)$$

$$+ 144x^4 \sin (x^6 - 3x^4 + 3x^2 - 1) + 30x^4 \cos (x^6 - 3x^4 + 3x^2 - 1)$$

$$+ 36x^3 \sin (x^6 - 3x^4 + 3x^2 - 1) + 60x^3 \cos (x^6 - 3x^4 + 3x^2 - 1)$$

$$- 36x^2 \sin (x^6 - 3x^4 + 3x^2 - 1) - 36x^2 \cos (x^6 - 3x^4 + 3x^2 - 1)$$

$$- 18x \cos (x^6 - 3x^4 + 3x^2 - 1) + 6 \cos (x^6 - 3x^4 + 3x^2 - 1)$$

$$- 18x \cos (x^6 - 3x^4 + 3x^2 - 1) + 6 \cos (x^6 - 3x^4 + 3x^2 - 1)$$

$$- 192$$

Since n is even and $f^{(n)}(x) < 0$, f(x) has a local maximum at x = 1. NOTE: the higher order derivatives are too large to write so they aren't reported here. See code in appendix for all of the derivatives.

Problem 2(b)

Find all critical points of the function and classify them as local maxima, local minima, or horizontal inflection points.

$$f(x) = \frac{1}{x^2 - 4x + 5}, \quad -\infty < x < \infty$$

The local maxima and minima can be found by finding f'(x), setting it equal to zero and solving for x. Doing so yields a critical point at x = 2. Using the test from the previous problem to determine the type of the critical point yields

$$f''(2) = -2$$

Therefore, this point is a local max.

The inflection points can be found by finding f''(x), setting it equal to zero and solving for x. Doing so yields inflection points at

$$x = -\frac{\sqrt{3}}{3} + 2, \ \frac{\sqrt{3}}{3} + 2$$

So, there are three critical points, one is a local max, and two inflection points.

Problem 2(g)

$$f(x) = x^2 e^{-x}, \quad -\infty < x < \infty$$

Applying the same approach in this problem yields a local minimum at x=0, a local max found at x=2, a horizontal inflection point at $x=-\sqrt{2}+2$, and another horizontal inflection point at $x=\sqrt{2}+2$. So, four critical points were found for this problem.

Exercises 13.8

Problem 1(b)

Apply the Leibniz rule:

$$\frac{d}{dt} \int_3^t x^t \sin(x) dx$$

Leibniz Rule The order of differentiation and integration can be interchanged as follows:

$$\frac{d}{dt} \int_{a(t)}^{b(t)} f(x,t) \, dx = \int_{a(t)}^{b(t)} \frac{\partial}{\partial t} f(x,t) \, dx + b'(t) f(b(t),t) - a'(t) f(a(t),t) \tag{7}$$

In this problem

$$a(t) = 3$$

$$a'(t) = 0$$

$$b(t) = t$$

$$b'(t) = 1$$

Also,

$$\frac{\partial}{\partial t} \left(x^t \sin(x) \right) = \frac{\partial}{\partial t} \left(e^{\ln(x^t)} \sin(x) \right) = \sin(x) \frac{\partial}{\partial t} \left(e^{t \ln(x)} \right) = x^t \ln(x) \sin(x)$$

So, inserting everything into Leibniz rule and simplifying yields

$$\frac{d}{dt} \int_3^t x^t \sin(x) \, dx = \int_3^t x^t \ln(x) \sin(x) \, dx + t^t \sin(t)$$

Problem 1(d)

$$\frac{d}{d\alpha} \int_{-2\alpha^2}^{-\alpha} e^{\alpha x^3} \, dx$$

For this problem

$$a(\alpha) = -2\alpha^2$$

$$a'(\alpha) = -4\alpha$$

$$b(\alpha) = -\alpha$$

$$b'(\alpha) = -1$$

Also,

$$\frac{\partial f}{\partial \alpha} = x^3 e^{\alpha x^3}$$

Using the above derivatives in the definition of Leibniz rule and simplifying yields

$$\frac{d}{d\alpha} \int_{-2\alpha^2}^{-\alpha} e^{\alpha x^3} dx = \int_{-2\alpha^3}^{-\alpha} x^3 e^{\alpha x^3} dx - e^{-\alpha^4} + 4\alpha e^{-8\alpha^6}$$

Problem 1(f)

$$\frac{d}{dy} \int_{y^2}^1 \frac{x}{x^3 + y^3} \, dx$$

For this problem

$$a(y) = y^{2}$$

$$a'(y) = 2y$$

$$b(y) = 1$$

$$b'(y) = 0$$

and

$$\frac{\partial f}{\partial y} = \frac{-3xy^2}{x^3 + y^3}$$

Inserting these into the definition of Leibniz rule

$$\frac{d}{dy} \int_{y^2}^{1} \frac{x}{x^3 + y^3} dx = \int_{y^2}^{1} \frac{-3xy^2}{x^3 + y^3} dx - \frac{2}{y^3 + 1}$$

Problem 1(g)

$$\frac{d^2}{da^2} \int_{5a}^{a^2} \cos(v^2 + a^2) \, dv$$

This problem can be solved by using the Leibniz rule twice. That is,

$$\frac{d^2}{da^2} \int_{5a}^{a^2} \cos(v^2 + a^2) \, dv = \frac{d}{da} \left[\frac{d}{da} \int_{5a}^{a^2} \cos(v^2 + a^2) \, dv \right]$$

Applying Leibniz rule to the part inside the square brackets yields

$$\frac{d^2}{da^2} \int_{5a}^{a^2} \cos(v^2 + a^2) \, dv = \frac{d}{da} \left[-\int_{5a}^{a^2} 2a \sin(v^2 + a^2) \, dv + 2a \cos(a^4 + a^2) - 5\cos(26a^2) \right]$$

Which can be written as

$$\frac{d^2}{da^2} \int_{5a}^{a^2} \cos(v^2 + a^2) \, dv = -\frac{d}{da} \int_{5a}^{a^2} 2a \sin(v^2 + a^2) \, dv - 4a^2 \left(2a^2 + 1\right) \sin\left(a^4 + a^2\right) + 2\cos\left(a^4 + a^2\right) + 260a \sin\left(26a^2\right)$$

Applying Leibniz rule again,

$$\frac{d^2}{da^2} \int_{5a}^{a^2} \cos(v^2 + a^2) \, dv = -\int_{5a}^{a^2} \left(4a^2 \cos(v^2 + a^2) + 2\sin(v^2 + a^2) \right) \, dv - 4a^2 \sin(a^4 + a^2) + 270a \sin(26a^2) - 4a^2 (2a^2 + 1) \sin(a^4 + a^2) + 2\cos(a^4 + a^2)$$

Problem 2(b)

Derive the Taylor series of the given function f(x) about x = 0, up to and including terms of second order, using the Leibniz rule to obtain f'(x) and f''(x).

$$f(x) = \int_{-x}^{\cos(x)} \frac{1}{t^3 + 1} dt$$

Evaluating the integral at x = 0,

$$f(0) = \int_0^1 \frac{1}{t^3 + 1} dt = \frac{1}{3} \log(2) + \frac{\sqrt{3}\pi}{9}$$

The equation for a Taylor series is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Through second order terms, about x = 0,

$$f(x)|_0 = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \dots$$

Next, Leibniz rule is applied in the same way as it was in the preceding problems. Doing this and inserting the results into the equation for a Taylor series yields

$$\int_{-x}^{\cos(x)} \frac{1}{t^3 + 1} dt = \frac{\sqrt{3}\pi}{9} + \frac{1}{3}\log(2) + x - \frac{x^2}{4} + \mathcal{O}(x^3)$$

Problem 2(d)

$$f(x) = \int_0^{1+2x} e^{-xt^2} dt$$

This problem is solved in the same manner as the preceding problem. Doing so yields

$$f(x) = \int_0^{1+2x} e^{-xt^2} dt = 1 + \frac{5x}{3} - \frac{19x^2}{10} + \mathcal{O}(x^3)$$

Problem 2(f)

$$f(x) = \int_{-x}^{3\sin(x)} \cos(xt^2) dt$$

Applying the same process yields

$$f(x) = \int_{-x}^{3\sin(x)} \cos(xt^2) dt = \frac{x\Gamma(\frac{1}{4})}{\Gamma(\frac{5}{4})} + \mathcal{O}(x^3)$$

Problem 3

Show, by repeated differentiation of the formula

$$\int_0^\infty e^{-ax} \, dx = \frac{1}{a}$$

that

$$\int_0^\infty x^n e^{-x} \, dx = n!$$

for $n = 0, 1, 2, 3, \dots$

This problem can be solved using integration by parts.

$$\int u \, dv = uv - \int v \, du$$

Letting

$$\mathcal{I}(n) = \int_0^\infty x^n e^{-x} \, dx$$

Now, $\mathcal{I}(0)$ is

$$\mathcal{I}(0) = \int_0^\infty e^{-x} dx = -e^{-x} \Big|_0^\infty = 1$$

And,

$$\mathcal{I}(1) = \int_0^\infty x e^{-x} \, dx$$

Letting u = x and $dv = e^{-x}dx$,

$$du = dx$$
$$v = -e^{-x}$$

Thus,

$$\mathcal{I}(1) = \int_{0}^{\infty} x e^{-x} \, dx = -x e^{-x} \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-x} \, dx$$

Evaluating the above integral yields

$$\mathcal{I}(1) = 1\mathcal{I}(0)$$

Now

$$\mathcal{I}(2) = \int_0^\infty x^2 e^{-x} \, dx$$

Let $u = x^2$ and $dv = e^{-x}dx$,

$$du = 2x dx$$
$$v = -e^{-x}$$

Inserting these into integration by parts

$$\int_0^\infty x^2 e^{-x} \, dx = -2xe^{-x} \Big|_0^\infty + \int_0^\infty 2xe^{-x} \, dx = 2$$

So

$$\mathcal{I}(2) = 2\mathcal{I}(1)$$

Now evaluating $\mathcal{I}(n-1)$,

$$\mathcal{I}(n-1) = \int_0^\infty x^{n-1} e^{-x} dx$$

Letting $u = x^{n-1}$ and $dv = e^{-x} dx$,

$$du = (n-1)x^{n-2} dx$$
$$v = -e^{-x}$$

Inserting these into integration by parts

$$\mathcal{I}(n-1) = \int_0^\infty x^{n-1} e^{-x} \, dx = -x^{n-1} e^{-x} \Big|_0^\infty + \int_0^\infty (n-1) x^{n-2} e^{-x} \, dx$$

Next,

$$\mathcal{I}(n) = \int_0^\infty x^n e^{-x} \, dx$$

Letting $u = x^n$ and $dv = e^{-x} dx$,

$$du = nx^{n-1} dx$$
$$v = -e^{-x}$$

Inserting these into integration by parts,

$$\mathcal{I}(n) = \int_0^\infty x^n e^{-x} \, dx = -x^n e^{-x} \Big|_0^\infty + \int_0^\infty n x^{n-1} e^{-x} \, dx$$
$$= n \int_0^\infty x^{n-1} e^{-x} \, dx = n \mathcal{I}(n-1)$$

This recursion implies the following

$$\mathcal{I}(n) = \int_0^\infty x^n e^{-x} dx = n! \, \mathcal{I}(0) = n!$$

IPython SymPy Code

In [1]: %pylab inline

Populating the interactive namespace from numpy and matplotlib

In [2]: from sympy import *

In [3]: init_printing()

In [4]: from IPython.display import display

In [5]: x = Symbol('x')

In [6]: def f(x):

return 1/(2+x**(10))

In [7]: diff(f(x),x,20).expand().subs(x,0)

Out[7]:

304112751022080000

In [8]: series(f(x), x0=0, n=40)

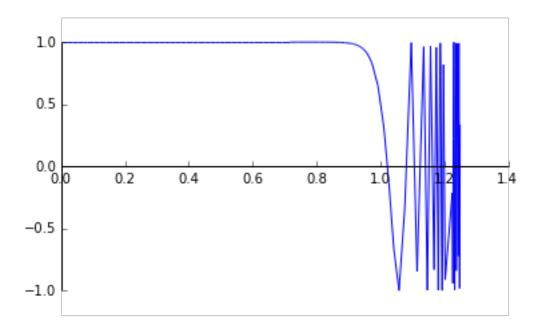
Out[8]:

$$\frac{1}{2} - \frac{x^{10}}{4} + \frac{x^{20}}{8} - \frac{x^{30}}{16} + \mathcal{O}\left(x^{40}\right)$$

In [9]: def f(x):

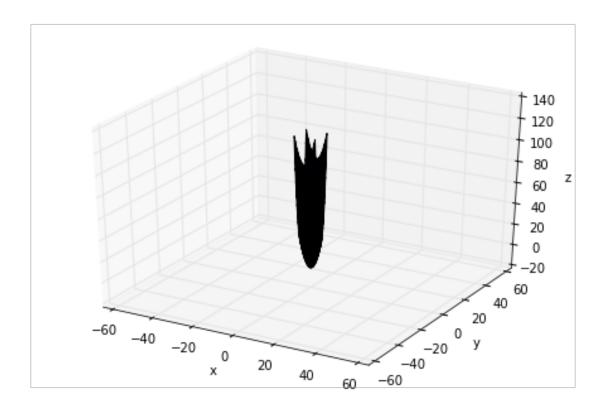
return cos(x**(20))

In [10]: plot(f(x), (x,0,1.25), ylim=[-1.2,1.2])



Out[10]: <sympy.plotting.plot.Plot at 0x7f6b5a472dd8>

```
In [11]: for n in range(0,40):
             print("{} {} ".format(n+1, diff(f(x), x, n+1).subs(x, 0)))
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 0
23 0
24 0
25 0
26 0
27 0
28 0
29 0
30 0
31 0
32 0
33 0
34 0
35 0
36 0
37 0
38 0
40 \ \ -407957641623948867172805634798057947136000000000
    series(f(x), n=138)
1
    Exercises 13.6
In [12]: y = Symbol("y")
In [13]: def f(x, y):
             return x**2+4*y**2-4
In [14]: mpmath.splot(f,[-5,5],[-5,5])
```



```
In [20]: def f(x, y):
             return (x*(cos(pi*y)+1) + (x**3 + 8)*y)
In [21]: diff(f(x,y),y)
Out[21]:
                                      x^3 - \pi x \sin(\pi y) + 8
In [22]: _.subs(x,-2).subs(y,1)
Out[22]:
                                               0
In [23]: def f(x, y):
             return x - y + \sin(y)
In [24]: diff(f(x, y), y)
Out[24]:
                                           \cos(y) - 1
In [25]: _.subs(y,0)
Out [25]:
                                               0
In [26]: def f(x,y):
             return x*y - y**3 - 1
In [27]: fx = diff(f(x,y),x,1)
In [28]: fxx = diff(f(x,y),x,2)
In [29]: fy = diff(f(x,y),y,1)
In [30]: fyy = diff(f(x,y),y,2)
In [31]: fxy = diff(f(x,y),x,y)
In [32]: simplify(-fx/fy)
Out[32]:
                                           -\frac{y}{x-3y^2}
In [33]: simplify((2*fx*fy*fxy - fx**2*fyy - fy**2*fxx)/(fy**3))
Out [33]:
In [34]: pprint(fx)
у
```

```
In [35]: y = Function('y')(x)
In [36]: dydx = solve(diff(x*y - y**3-1, x, 1), diff(y,x,1))[0]
In [37]: simplify(solve(diff(x*y - y**3-1, x, 2), diff(y,x,2))[0].subs(diff(y,x,1),dydx))
Out[37]:
                                          \frac{2xy(x)}{\left(x - 3y^2(x)\right)^3}
In [38]: y = Symbol('y')
In [39]: def f(x,y):
              return y*cos(y) - x**3
In [40]: fx = diff(f(x,y),x,1)
In [41]: fx
Out[41]:
                                              -3x^2
In [42]: fxx = diff(f(x,y),x,2)
In [43]: fxx
Out[43]:
                                              -6x
In [44]: fy = diff(f(x,y),y,1)
In [45]: fy
Out[45]:
                                        -y\sin(y) + \cos(y)
In [46]: fyy = diff(f(x,y),y,2)
In [47]: fyy
Out [47]:
                                       -y\cos(y) + 2\sin(y)
In [48]: fxy = diff(f(x,y),x,y)
In [49]: fxy
Out[49]:
                                               0
In [50]: simplify(-fx/fy)
```

Out [50]:

$$-\frac{3x^2}{y\sin(y) - \cos(y)}$$

In [51]: simplify((2*fx*fy*fxy - fx**2*fyy - fy**2*fxx)/(fy**3))

Out[51]:

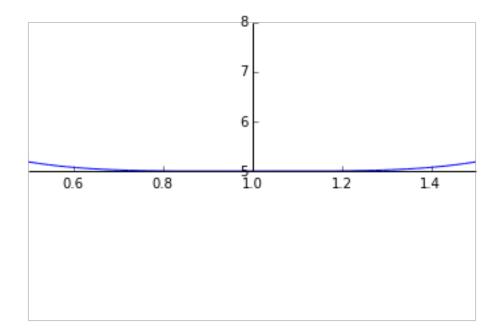
$$-\frac{3x}{\left(y\sin{(y)}-\cos{(y)}\right)^{3}}\left(3x^{3}\left(y\cos{(y)}+2\sin{(y)}\right)+2\left(y\sin{(y)}-\cos{(y)}\right)^{2}\right)$$

3 Exercises 13.7

In [52]: ff = Function('f')(x)

In [53]: ff = 3*(x-1)**4 + 5

In [54]: plot(ff, xlim=[0.5,1.5], ylim=[2,8])



Out[54]: <sympy.plotting.plot.Plot at 0x7f6b59168d68>

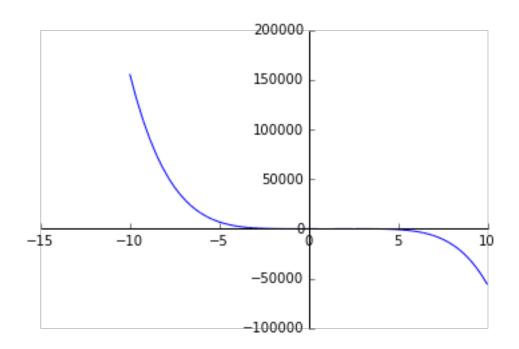
In [55]: diff(ff,x).expand()

Out[55]:

$$12x^3 - 36x^2 + 36x - 12$$

In [56]: ff = (x+1)*(x-3)*(1-x)**3

In [57]: plot(ff)



```
Out[57]: <sympy.plotting.plot.Plot at 0x7f6b591686a0>
In [58]: simplify(diff(ff,x,1))
Out[58]:
                                  -5x^4 + 20x^3 - 18x^2 - 4x + 7
In [59]: _.subs(x,1)
Out[59]:
                                              0
In [60]: simplify(diff(ff,x,2))
Out[60]:
                                    -20x^3 + 60x^2 - 36x - 4
In [61]: _.subs(x,1)
Out[61]:
                                              0
In [62]: simplify(diff(ff,x,3))
Out[62]:
                                       -60x^2 + 120x - 36
```

```
In [63]: _.subs(x,1)
Out [63]:
                                          24
In [64]: ff = exp(8*(x-1)**5)
In [65]: diff(ff,x,1).simplify()
Out [65]:
                                   40(x-1)^4 e^{8(x-1)^5}
In [66]: def classify_pt(inp_func, x0, maxIter=10, exp_choice=False):
            c = 1
            status=False
            pt_type = None
            while c < maxIter:</pre>
                fpx = diff(ff,x,c)
                fpx0 = fpx.subs(x,x0).simplify()
                print("\n-----")
                if c == 1:
                    print("{}st order derivative:".format(c))
                elif c == 2:
                    print("{}nd order derivative:".format(c))
                elif c==3:
                    print("{}rd order derivative:".format(c))
                    print("{}th order derivative:".format(c))
                print("----")
                if exp_choice:
                    display(expand(fpx))
                else:
                    display(simplify(fpx))
                display(simplify(fpx0))
                if fpx0 != 0 and c >= 2:
                    if c\%2==0 and fpx0 < 0:
                        print("Local maximum found at x = {}".format(x0))
                        pt_type="Local max"
                    elif c\%2==0 and fpx0 > 0:
                        print("Local minimum found at x = {}".format(x0))
                        pt_type="Local min"
                    elif c\%2!=0:
                        print("Horizontal inflection point found at x = \{\}.".format(x0))
                        pt_type="Inflection point"
                    else:
                        print("Error: unable to classify.")
                    status=True
                    break
                c+=1
            return pt_type
In [67]: classify_pt(ff,1)
```

1st order derivative:

$$40(x-1)^4 e^{8(x-1)^5}$$

0

2nd order derivative:

$$(x-1)^3 \left(1600 (x-1)^5 + 160\right) e^{8(x-1)^5}$$

0

3rd order derivative:

$$(x-1)^2 \left(64000 (x-1)^{10} + 19200 (x-1)^5 + 480\right) e^{8(x-1)^5}$$

0

4th order derivative:

$$320(x-1)\left(8000(x-1)^{15}+4800(x-1)^{10}+480(x-1)^{5}+3\right)e^{8(x-1)^{5}}$$

0

5th order derivative:

$$\left(102400000\left(x-1\right)^{20}+102400000\left(x-1\right)^{15}+23040000\left(x-1\right)^{10}+960000\left(x-1\right)^{5}+960\right)e^{8\left(x-1\right)^{5}}$$

960

Horizontal inflection point found at x = 1.

Out[67]: 'Inflection point'

In [68]: ff = (1-x)*sin((x**2-1)**3)

In [69]: classify_pt(ff,1,exp_choice=True)

1st order derivative:

$$-6x^{6}\cos\left(x^{6}-3x^{4}+3x^{2}-1\right)+6x^{5}\cos\left(x^{6}-3x^{4}+3x^{2}-1\right)+12x^{4}\cos\left(x^{6}-3x^{4}+3x^{2}-1\right)-12x^{3}\cos\left(x^{6}-3x^{4}+3x^{2}-1\right)+12x^{4}\cos\left(x^{6}-3x^{4}+3x^{2}-1\right)+12x^{$$

0

2nd order derivative:

$$36x^{11}\sin\left(x^{6} - 3x^{4} + 3x^{2} - 1\right) - 36x^{10}\sin\left(x^{6} - 3x^{4} + 3x^{2} - 1\right) - 144x^{9}\sin\left(x^{6} - 3x^{4} + 3x^{2} - 1\right) + 144x^{8}\sin\left(x^{6} - 3x^{4} + 3x^{2} - 1\right) + 14x^{6}\sin\left(x^{6} - 3x^{4} + 3x^{2} - 1\right) + 14x^{$$

0

3rd order derivative:

$$216x^{16}\cos\left(x^{6} - 3x^{4} + 3x^{2} - 1\right) - 216x^{15}\cos\left(x^{6} - 3x^{4} + 3x^{2} - 1\right) - 1296x^{14}\cos\left(x^{6} - 3x^{4} + 3x^{2} - 1\right) + 1296x^{13}\cos\left(x^{6} -$$

0

4th order derivative:

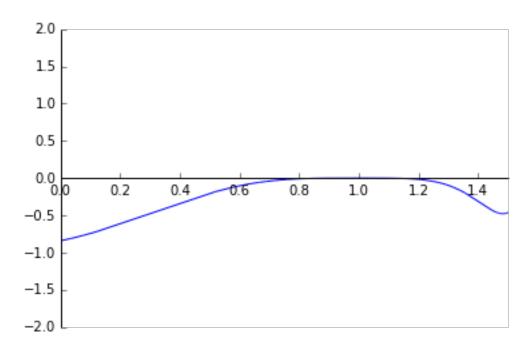
$$-1296x^{21}\sin\left(x^6 - 3x^4 + 3x^2 - 1\right) + 1296x^{20}\sin\left(x^6 - 3x^4 + 3x^2 - 1\right) + 10368x^{19}\sin\left(x^6 - 3x^4 + 3x^2 - 1\right) - 10368x^{18}\sin\left(x^6 - 3x^4 + 3x^2 - 1\right) + 10368x^{19}\sin\left(x^6 - 3x^4 + 3x^2 - 1\right) + 10368x^{19}\cos\left(x^6 - 3x^4 + 3x^2 - 1\right) + 10368x^{19}\cos\left(x^6 - 3x^4 + 3x^2 - 1\right) + 10368$$

-192

Local maximum found at x = 1

Out[69]: 'Local max'

In [70]: plot(ff,xlim=[0,1.5],ylim=[-2,2])



```
Out[70]: <sympy.plotting.plot.Plot at 0x7f6b590609e8>
In [71]: ff = 1/(x**2 - 4*x + 5)
In [72]: def find_crit_pts(input_function):
          crit_pts = solve(diff(input_function,x),x)
          infl_pts = solve(diff(input_function,x,2),x)
          cpt = []
          pt_type = []
          pt_counter = 1
          for pt in crit_pts:
             print("Point {} at x = {}".format(pt_counter, pt))
             print("======\n")
             cpt.append(pt)
             pt_type.append(classify_pt(input_function, pt.simplify()))
             pt_counter += 1
          for pt in infl_pts:
             print("\n====
             print("Point {} at x = {}".format(pt_counter, pt))
             print("=======\n")
             cpt.append(pt)
             pt_type.append(classify_pt(input_function, pt.simplify()))
             pt_counter += 1
          return (cpt, pt_type)
In [73]: find_crit_pts(ff)
Point 1 at x = 2
______
```

1st order derivative: $\frac{-2x+4}{(x^2-4x+5)^2}$ 2nd order derivative: $\frac{1}{\left(x^2 - 4x + 5\right)^3} \left(-2x^2 + 8x + 8\left(x - 2\right)^2 - 10\right)$ Local maximum found at x = 2_____ Point 2 at x = -sqrt(3)/3 + 21st order derivative: $\frac{-2x+4}{(x^2-4x+5)^2}$ 2nd order derivative: $\frac{1}{(x^2 - 4x + 5)^3} \left(-2x^2 + 8x + 8(x - 2)^2 - 10 \right)$ 3rd order derivative: $\frac{24}{\left(x^2 - 4x + 5\right)^4} \left(x - 2\right) \left(x^2 - 4x - 2\left(x - 2\right)^2 + 5\right)$

 $-\frac{27\sqrt{3}}{16}$

Horizontal inflection point found at x = -sqrt(3)/3 + 2.

Point 3 at x = sqrt(3)/3 + 2

1st order derivative:

$$\frac{-2x+4}{(x^2-4x+5)^2} - \frac{3\sqrt{3}}{8}$$

2nd order derivative:

$$\frac{1}{(x^2 - 4x + 5)^3} \left(-2x^2 + 8x + 8(x - 2)^2 - 10 \right)$$

0

3rd order derivative:

$$\frac{24}{\left(x^2 - 4x + 5\right)^4} \left(x - 2\right) \left(x^2 - 4x - 2\left(x - 2\right)^2 + 5\right)$$

$$\frac{27\sqrt{3}}{16}$$

Horizontal inflection point found at x = sqrt(3)/3 + 2.

In [74]: ff = x**2*exp(-x)

In [75]: find_crit_pts(ff)

Point 1 at x = 0

1st order derivative:

	$x\left(-x+2\right)e^{-x}$
	0
2nd order derivative:	
	$\left(x^2 - 4x + 2\right)e^{-x}$
	2
Local minimum found at $x = 0$	
Point 2 at x = 2	
1st order derivative:	
	$x\left(-x+2\right)e^{-x}$
	w (w 2) c
	0
2nd order derivative:	
	$\left(x^2 - 4x + 2\right)e^{-x}$
	$-rac{2}{e^2}$
Local maximum found at $x = 2$	
Point 3 at x = -sqrt(2) + 2	
1st order derivative:	
	$x\left(-x+2\right)e^{-x}$
	$\frac{-2+2\sqrt{2}}{e^{-\sqrt{2}+2}}$

2nd order derivative:	
(x^2)	$-4x+2)e^{-x}$
	0
3rd order derivative:	
(-x)	$^2 + 6x - 6) e^{-x}$
	$-\frac{2\sqrt{2}}{e^{-\sqrt{2}+2}}$
	C
<pre>Horizontal inflection point found at x =</pre>	-sqrt(2) + 2.
Point 4 at x = sqrt(2) + 2	
1st order derivative:	
x	$(-x+2)e^{-x}$
	$2 + 2\sqrt{2}$
	$-\frac{2+2\sqrt{2}}{e^{\sqrt{2}+2}}$
2nd order derivative:	
(x^2)	$-4x+2)e^{-x}$
(**	
	0
3rd order derivative:	
(-x	$(x^2 + 6x - 6)e^{-x}$
	$\frac{2\sqrt{2}}{e^{\sqrt{2}+2}}$
Horizontal inflection point found at x =	ě
Out[75]: ([0, 2, -sqrt(2) + 2, sqrt(2) + ['Local min', 'Local max', 'In:	<pre>2], flection point', 'Inflection point'])</pre>

4 Exercises 13.8

```
In [76]: t = Symbol("t")
In [77]: alpha = Symbol("alpha")
In [78]: diff(x**t*sin(x),t)
Out[78]:
                                         x^t \log(x) \sin(x)
In [79]: exp((-2*alpha**2)**3).simplify()
Out[79]:
                                              e^{-8\alpha^6}
In [80]: diff(x/(x**3 + y**3),y)
Out[80]:
In [81]: simplify(-2*y*y**2/((y**2)**3+y**3))
Out[81]:
In [82]: a = Symbol("a")
In [83]: diff(-5*cos(26*a**2),a)
Out[83]:
                                          260a \sin(26a^2)
In [84]: part2b = integrate(1/(t**3+1),(t,-x,cos(x))).simplify()
In [85]: part2b.subs(x,0)
Out[85]:
                                         \frac{1}{3}\log(2) + \frac{\sqrt{3}\pi}{9}
In [86]: help(series)
Help on function series in module sympy.series.series:
series(expr, x=None, x0=0, n=6, dir='+')
    Series expansion of expr around point 'x = x0'.
    See the doctring of Expr.series() for complete details of this wrapper.
In [87]: series(part2b, n=3)
```

```
Out[87]:
```

$$\frac{\sqrt{3}\pi}{9} + \frac{1}{3}\log(2) + x - \frac{x^2}{4} + \mathcal{O}(x^3)$$

In [88]: part2d = integrate(exp(-x*t**2),(t,0,1+2*x))

In [89]: part2d.simplify().subs(x,0)

Out[89]:

1

In [90]: series(part2d,n=3)

Out[90]:

$$1 + \frac{5x}{3} - \frac{19x^2}{10} + \mathcal{O}(x^3)$$

In [91]: part2f = integrate(cos(x*t**2),(t,-x,3*sin(x))).simplify()

In [92]: part2f

Out [92]:

$$\frac{\sqrt{2}\sqrt{\pi}\Gamma\left(\frac{1}{4}\right)}{8\sqrt{x}\Gamma\left(\frac{5}{4}\right)}\left(C\left(\frac{\sqrt{2}x^{\frac{3}{2}}}{\sqrt{\pi}}\right) + C\left(\frac{3\sqrt{2}}{\sqrt{\pi}}\sqrt{x}\sin\left(x\right)\right)\right)$$

In [93]: series(part2f,n=3)

Out[93]:

$$\frac{x\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{5}{4}\right)} + \mathcal{O}\left(x^3\right)$$

In [94]: integrate(x**3*exp(-x),(x,0,oo))

Out [94]:

6

In [107]: integrate(exp(-a*x),x)

Out[107]:

$$\begin{cases} x & \text{for } a = 0 \\ -\frac{1}{a}e^{-ax} & \text{otherwise} \end{cases}$$

In [111]: diff(exp(-a*x),x)

Out[111]:

 $-ae^{-ax}$

In [112]: diff(_,a)

Out[112]:

$$axe^{-ax} - e^{-ax}$$

In [113]: diff(_,a)

Out[113]:

$$-ax^2e^{-ax} + 2xe^{-ax}$$

In [114]: diff(_,a)

Out[114]:

$$ax^3e^{-ax} - 3x^2e^{-ax}$$

In []: