AE 5331: Analytic Methods Engineering
Homework 1

James Grisham

September 29, 2014

Problem 1

Problem Statement

Determine the following limits:

sin x

1;
(a) x% x

(b) Tim sin(2x)

z—0 X

. 1\*
(¢) lim <1+>

T—00 T

@ m (1-7)

Solution
Part A
Applying the limit directly yields
. sin(z) 0
lim = -
z—0 iy 0
which is indeterminate. Therefore, this problem is a candidate for I’'Hopital’s rule.
. d /.-
£ (s
lim sin(z) = li M = lim cos(z)
z—=0 X z—0 I (x) z—0
Therefore,
lim S2@) _
z—0 X




James Grisham Analytic Methods Engineering

Homework 1

Part B

Applying the limit directly yields

lim sin(2z) _ 0
z—0 T 0
Therefore, this problem is a candidate for I’'Hopital’s rule.

in(2
lim sin(2z) = lim 2 cos(2x)
z—0 T z—0

lim sin(2z) _o

z—0 X

Part C

T—00 T—r00

. 1\* : :L‘ln(l—i—l)
lim (1+—) = lime @
x
Because e is constant, we will look at the limit of the power first.
1 In(1+21) (1

limxln<1+>:hm n x):n()zg
T—00 x T—r00

which is indeterminate. So, this problem is a candidate for I’Hopital’s rule.

0 0
1
(=277

1 1+1 1
lim xln<1+> = lim —% ——— = lim =1

]|

Therefore,
1 X
lim <1 + > =e
T—00 T
Part D

Using the same approach as before,

1\* 1
lim <1 — ) = e¥In(l—3
T—00 €T

Again, since e is a constant, we can apply the limit to the exponent.
1 m(1-1) o
lim a:ln<1—> = lim M:f
T—00 T T—00 0
Therefore, this problem is a candidate for I’'Hoptial’s rule.
1 _
1- nCel -1

. 1 . P .

1\* 1
lim (1 — > = -
T—00 x e

B =

So, the limit is
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Problem 2

Problem Statement

Examine continuity and differentiability of the following functions at x = 0:

sin(z), <0

x, z =20

(a) f(z)= {
(b) f(z) = [sin(z)|

Solution
Part A

According to the definition of continuity, a function f(z) is continuous at x = ¢ if

lim f(z) = f(zo)

T—rT0

For differentiability, we must show that

lim
h—0

f(wo+h) = f(zo)
h

exists. The value of f(zg) is
fzo) = f(0) =0

Applying the limit from the left,

lim sin(z) =0
z—0~

From the right,

Iim =0
z—0t

Since the limits approach f(0), the function is continuous. Now, checking for differentiability from

the left,
i W =SfO) o, osin(h) 0
h—0— h h—0—- h 0
Applying ’Hopital’s rule,
. sin(h) .
1 =1 h)=1
T e
From the right,
lim M — lim - =1
h—0+ h h—0t h

Therefore, the function is both, continuous and differentiable about x = 0.
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Part B

The function is
f(x) = |sin()|

Testing for continuity,

lim | sin(z)| =0
z—0

This applies to the limit from either side. Both are equal to zero. Testing for differentiability from

the left,
lim (h) — f(0) _ lim —sin(h) + sin(0) ~ lim —sin(h) 4
h—0~ h h—0~ h h—0  h
From the right,
lim f(h) — £(0) ~ lim sin(h) — sin(0) _ lim sin(h) _1
h—0+ h h—0+t h h—0+ h

Therefore, the function is continuous, but not differentiable.

Part C

Testing for continuity from the left,

From the right,

lim 22 =0
z—0t

Therefore, the function is continuous. Testing for differentiability from the right:
lim ———"= = lim — =0
h—0~ h h—0- h

Testing for differentiability from the left,
fh) =) ..~ —h

h—0+ h h—0+ h

Therefore, the function is continuous, but not differentiable.

Problem 3

Problem Statement

Determine whether the series in “More examples” and “Exercise of infinite series” of Lecture 3
(whose notes are available on the course website) are convergent or divergent, and prove it. Note:
if a problem appears twice, you only need to solve it once.

The series are:




James Grisham Analytic Methods Engineering Homework 1

a 3 n —3/2 o (cos(n)\? = /n?2+2m—1 2
();( +3) (f);_;(%l) (k);<n4+3 )
[ee) n o0 (_1)n+1 o] . 1
®) 2 s &) >, UpSEIRT (1+)
= n + (cos(n))? > 1
@2 W EM ) 2 o
1 0 NS e RS
(d)n1<1+ 2> ()nzl ()ngl 2n
0o 1 ' 00 9 00 n2 1
(¢) 7;<n n—i—lO) b) ;ln <2+n> (0) ;ln (n2+1>
Solution
Part A
The series is -
Z(n+3)*3/2
n=1

Convergence of this series can be determined using the comparison test.

Comparison Test Let ) a, be a series with no negative terms.

(a) > ay converges if there is a convergent series > b, with a,, < b, for all n > N, for some
integer V.

(b) > a, diverges if there is a divergent series of nonnegative terms > ¢, with a, > ¢, for
all n > N, for some integer N.

Letting

1 1
" e M

The first sequence a,, is always less than b,, because of the added constant in the denominator.
Therefore,

v
an < by

> by, corresponds to a p-series with p > 1. Therefore, ) b, is convergent. Since ) b, is convergent,
by the comparison test, a, must also be a convergent series.

Part B

e.9]
> T s
“—= n?+3In(n)

In this case, the limit comparison test will be used.
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Limit Comparison Test Suppose that a, > 0 and b, > 0 for all n > N (where N is an
integer).
1 If lim ™ =¢> 0, then > a, and > b, both converge or both diverge.

n—oo n

2. If lim =" =0 and > b, converges, then Y a, converges.
n—o0 by,

3. If lim Z—n = o0 and ) b, diverges, then ) a,, diverges.

n—oo n

Let
n
ap =
n? 4+ 31n(n)
and 1
b, = —
n
Evaluating the limit yields
_n
lim &7 = i 230 g n72: lim b
n—oo b,  n—oo % n—oo n? 4+ 31n(n) n—ooq + 31n(n)

n2

Looking at the limit of the second term in the denominator more closely,

lim 31n§n) _ >
n—oo 1 00

which is indeterminate. Therefore, this limit is a candidate for ’'Hopital’s rule.

|
lim 200 o 3
n—oo N n—oo 2n2
Therefore,
. an
Jm g =1 (1)

Because the value of the limit in (1) is greater than zero and finite, ) a, and > b, either both
converge or both diverge. Because we already know that b, diverges (it is a power series with
p=1), > a, must also diverge.

Part C

)
2 : n—lOO
n=1

This series is a p-series with p = 100. Therefore, the series is convergent.




James Grisham Analytic Methods Engineering Homework 1

Part D
1+ 2)
n=1 n
Letting
1
an — 1 + ﬁ
and 1
b, — —
n no

where " b, is a divergent p-series. The first series (> ay) will always be greater than the second
series (> by). Therefore, by the comparison test, this series diverges.

Part E
n n+10) “—=n2+10n
n=1 n=1
Letting
10
n = n? 4+ 10n
and 1
bn — ﬁ

where b, is a convergent p-series. Using the limit comparison test,

a 10— 10
lim —= = lim WZ lim =10

10
n—o0o bn n— 00 oz n—oo | + o

Since a
lim = =¢>0

n—o0 n

two situations are possible: (1) > a, and >_ b, both converge or (2) > a, and > b, both diverge.
Since we know that ) b, is a convergent p-series, > a, must also be convergent.

Part F
i cos(n)
2n—1
n=1
Letting
2
0, — cos(n)
2n—1
and 1
bn — ﬁ
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where > b, is a convergent p-series, and applying the limit comparison test,

2
cos(n)
. Gy . ( 2n—1 > ) n? cos?(n) _ cos?(n)
lim — = lim ~————=lim —(— ——— = — T
n—o0 by, n—00 =5 n—oo 4n* —4n + 1 n~>oo4_g_|_72
n n

(2)

The final limit in (2) could be anything from 0 to 1/4 (because of the cos?(n) term). Since Y b,
is a convergent series, and since a,, is either equal to zero or greater than zero, a, must also be a
convergent series.

Part G

> -1 n+1
e

The convergence of this series can be determined using the alternating series test.

Alternating series Test The series

o0

Z(—l)n+1un =U] — U+ U3 —Ug+ ...

n=1
converges if all three of the following conditions are satisfied:
1. The u,’s are all positive.
2. Up = Upyq for all n > N, for some integer N.

3. u, — 0.

In this case,

Up = —
n

So, the first condition is satisfied. Now, the second condition (with N = 1):

?
Uy 2 Upt1 V2N
1v 1
— =
n_ n+1

Therefore, the second condition is also satisfied.

u, — 0 asn — oo?

o1
lim — =0
n—oo N

Therefore, all three conditions of the alternating series test are met and the series is conver-
gent.
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Part H
i n + cos?(n)
n?+4
Letting
n + cos?(n)
ap = ——5—
" n?+4
and 1
b, = —
n

where Y b, is a Harmonic series (divergent), and applying the limit comparison test,

n+cos?(n 2
. ap ) Ti) on?+ ncosQ(n) o1+ %(n)
lim — = lim T =1 ———— = lim =
n—o0 by, n—00 - n—00 n+4 n—00 1'+’ﬁ§
Since a
lim — =¢>0,
n—oo

n
> ap and ) by, either both converge or both diverge. Since ) b, is a divergent series, > a, must
also be a divergent series.

Part |

)
2 :e—nm
n=1

This is a geometric series. In general, a geometric series can be written as
a
E ar = —— |r| <1 (3)
1—r

If |e7®| < 1, or equivalently, |e¥| > 1, the series converges to

o0

()= 1 1 (@)

Cl—e®
n=1

where the —1 was added to account for the different indices in (3) and (4).
Part J

- 2
;m <2+n)

This series diverges. Divergence can be proved using the n-th term test.

o
nth-Term Test for Divergence Zan diverges if li_>m ay, fails to exist or is different from
n—oo

n=1
Zero.
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n—oo

2
lim In <2 + > =In(2) #0
n
Therefore, this series diverges.
Part K
0o 3
Z 'I’L2 + 2n—1\?2
— nt+3

Convergence can be determined using the limit comparison test. Letting

3
n2+2n—1\2
an =\ ———
" nt 43

and

where Yb,, is a convergent p-series, and applying the limit

3 3
n242n—1)2 n242n—1\2 4 3 g\ 2
. ni+3 . ni13 . n* 4+ 2n° —n*\ 2
lim — = lim ~———— = lim ~——%— = lim ( ——F——
n—oo by, n—00 = n—00 112\ 2 n—00 n*+3
n
((+)7)

3 3
4 3 2\ 5 2 1 2
203 —n?\ ? 1+2- 1
lim (” o ") — lim (o m)
n—00 n*+3 n—00 1_|_F

Therefore, Ya, and Xb, either both converge or both diverge. Since we already know that b, is
a convergent p-series, we can say that Ya, must also be a convergent series.

Part L

i(—l)"ln (1 + \/15>

n=1

The convergence of this series can be determined using the alternating series test. In this case,

un:1n<1+\;ﬁ>

The first condition is that all of the wu,s are positive. This condition is satisfied because the
argument of the natural log function is always greater than or equal to one.

The second condition is that
Up 2= Upt1 Vn=>N

where N is just some integer. As n increases, the argument of the natural log decreases. Therefore,
u, decrease. Thus, the second condition is satisfied.

10
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The third condition requires that
lim u, — 0
n—oo

Applying this,
. 1
nh_)rgloln (1 + \/ﬁ> =0

Because all three conditions are met, the series is convergent.

Part M

> 1
2w
The convergence of this series can be determined using the limit comparison test. Letting
B 1
Sy

and

where Yb,, is a convergent p-series, and applying the limit,

! 1
) .
x—lm = lim =1

2
x
n posrl nHOO?ﬂ-l

Therefore, as long as z is finite, either both Ya, and ¥b, converge or diverge. Since we know that
>b, is a convergent p-series, Ya, must also be a convergent series.

Part N

o (=1)"

> o

n=1
The convergence of this series can be determined using the alternating series test with
1
Toon

The first condition requires that all values of u,, are positive. This condition is satisfied.

Un

The second condition requires
Up = Upt1 VR 2 N

where N is some integer. This condition is also satisfied.

172 1 v
on Z g — 221
The third condition requires that u,, — 0.
i 1
ST

Therefore, the series is convergent.

11
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Part O
> n?—1 > 1 1 > 1 > 1
;1n(n2+1> :;[ln<1—n2>—ln<l—|—n2ﬂ :;ln<1—n2>—;ln<l+m>

Simplifying further,
> 1 > 1 - 1 - n?
;ln <1— nQ> —;ln <1+n2> :nglln (1_712) —1—1;111 <n2—|—1)

Both of the series are convergent. The sum of two convergent series is a convergent series. Therefore,
the series is convergent.

Exercises 13.4

Problem 1

Let f(z,y) = sin(z* + 3y), where = 5t and y = t?> + 1, and denote f(z(t),y(t)) = F(t). Evaluate

dF'/dt using the chain rule,
dF _ 0fdr  Ofdy

At owdt oy dt
NOTE: Actually, the above equation is not the end of the “chain differentiation story,” for in
computing df/0x, we set x* + 3y = u, so that, again applying chain differentiation,

of d . ou

% = %(Slnu)% = etc.
and similarly for df/0y.
g‘i = cos(z? + 3y) (42?)
0
85: = cos(z* + 3y)(3)
dx
T 5
dy
— =2t
dt
Therefore,
dF
= 20(5t) cos((5t)* + 3(t2 + 1)) + 6t cos((5t) + 3(2 + 1))
Simplifying further,
ar 3 4 2
o= (2500t° + 6t) cos(625t™ + 3t + 3)

12
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Problem 2(b)

Let f(x,y) = €™, and denote f(z(t),y(t)) = F(t). Evaluate dF/dt in each case, using the chain
rule.

Vi+1

cos(t)

x(t)
y(t)

The chain rule is
aF _ofdu | 0f dy

dt Oz dt Oy dt

of 4y
ar ¢
gj; = ze™
dr 1
— = (t41)71/?
dt 2( +1)
d
di; = —sin(t)
Therefore,
dF 1
E — COS(t)thJrl cos(t) N Vi ¥ 1ex/t+1 cos(t) sin(t)
dF cos(t) . VT
P —Vi+1 t —+1 cos(t)
i |avipT o Vit isin®)e
Problem 2(d)
z(t) = In(t)
y(t) =t
Therefore,
dr _1
dt t
dy _
dt
Now,
dF _ 0fdz  0f dy
dt  Oxdt Oydt
Thus,
dF
= = et (1 +1n(t))
However, )
et In(t) _ eln(t ) — t
Using this,
dF
— =t (1 +In(¢
=t (1+1n(t))

13
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Problem 2(f)

x(t) =3t —1

y(t)=2t+5
dx
E_S
dy
29
dt

dE_0f dr  0f dy
dt Oz dt Oy dt

Inserting the derivatives into the chain rule and simplifying yields

dF
= (1264 13)el 10

Exercises 13.5

Problem 1

Expand the given function about the indicated point a, through third order terms. NOTE: (x —a)™
is of nth order.

The general equation for the Taylor series of a function of one variable is
= fM(a .
=3 e

Expanding through third order terms yields

F@ma ~ F(@) + F @) )+ T @ a2 4 T oyt

0.0.1 Parta
f(x) = e 2" about a =0

f/(ﬂ?) _ _26721

Thus, the expansion about x = 0 is

4
e g~ 1 -2z + 22 — §x3

14
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Part b

f(z) = e * about a =5

@) = —2¢72
f”(l’) _ 4672:):
f/”(CL'): Se 2x

Thus, the expansion about x = 5 is

e 2|5z e 10 (1 —2(z —5)+2(x —5)* - g(:v — 5)3>

Part ¢
f(z) = e ** about a = —3

(@) = —2¢7

f”(l’) — 46—21‘

f///(x) — _8e 2x
Thus, the expansion about x = —3 is

—2z 6 2 4 3
el g~e’ ([1—2(x+3)+2(x+3) —g(x+3)

Part d

f(x) =In(x) about a = 2

1
/ —
HOEE
1
1 o
f (SU)— 1‘2
2
"
(@) =
Thus, the expansion about x = 2 is
()]s ~ In(2) + 2 (2~ 2) — (2 -2+ (o~ 2)°
n(z)|s ~ In 5 (@ g\ 9%

15
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Part e

f(x)

1—'_72 about a =1
T

fl(z) = —2x(1 + 56'2)_2
f(x) = 83:2(1 + x2)_3 —2(1+ $2)_2
" (z) = —48333(1 + x2)_4 + 24z(1 + 332)

Thus, the expansion about x =1 is

1
1+a22|,

-1 —1)2
T +(w )
2 4

1
D)

The third order term is zero because /(1) = 0.

Part f

f(x) 722 about a = —1

fl(z) = —2x(1 + 332)_2
f'(x) =82 (1+2%) 7% —2(1 4+ 27) 72
f"(x) = —4823(1 + 22) ™% + 24z (1 + 2?)

Thus, the expansion about x = —1 is

1
1+22|_,

.
22 4

~
~

The third order term is zero because /(1) = 0.

Part g
f(x) = sin(x) about a = 2
f'(z)

()
f/// (SU)

cos(z)
—sin(x)

— cos(x)

Thus, the expansion about x = 2 is

-3

-3

(z—2)°

sin(z)|2 ~ sin(2) + (z — 2) cos(2) — 2

sin(2) —

16
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Part h

f(x) = cos(2z) about a =«

f'(z) = —2sin(2z)
f"(xz) = —4cos(2z)
1" (z) = 8sin(2x)

Thus, the expansion about x = 7 is

cos(2z)|r ~ 1 — 2(z — )2

Part i
f(x):$($—1)2=x3—2x2+m about a =1

fl(z) =32% — 4z +1
f(z) =6x —4
)= 6

Thus, the expansion about x =1 is

rz -1~ (x—-1)>2%+(z-1)3

Simplifying this equation yields the original equation.

Part j
f(z) =23 —1)+5=2"—2%+5 about a = 0

f(z) = 72% — 322
f"(x) = 4225 — 62
f"(z) = 210z* — 6

Thus, the expansion about x = 0 is

Pzt — 1) +5lp =5 —a®

17
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Problem 2(b)

Obtain the first four nonvanishing terms in the Taylor series of the given function about = = 0.

_ 1
S 24210

f(z)

The general equation for a Taylor series is

© £(n)(q
Fa) =3 LW gy

Solving this problem requires a lot of differentiation. The problem was solved with the help of a

CAS, specifically, SymPy. The first derivative is
102
f(x) =~ RTINS
(210 4 2)

However, f’(0) = 0 which means that the first order term vanishes. In fact, all the terms vanish
until the 10th order term which is
F19(0) = —907200

The symbolic expression was too large to fit on the page. The next derivative that is nonzero is
the 20th order derivative which is

F29(0) = 304112751022080000

and so on up until 30th order terms. Thus, the Taylor series expansion about z = 0 is given
by

1 1 10 20 30
S
2+20), 2 4 8 16

Problem 2(d)

The function given in this problem is

F() = cos(a™)

f'(z) = —20z" sin (z*°)
f"(x) = —20a1® (20x20 cos (xzo) + 19sin (xzo))
() = 40217 (2009}40 sin (:UQO) — 5702%° cos (CL‘QO) — 171sin (3320))

All of the derivatives evaluated at = 0 are zero up until the 40" order term. Continuing the
differentiation until four nonvanishing terms are found yields the following:

$4O 1:80 x120

20y _q_ T T 138
cos(z)|p =1 5 +24 720+(’)(3: )

18
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Exercises 13.6

Problem 1(b)

Given f(x,y) = 0 and a point (zg,yo) such that f(xg,yo) = 0, see if the conditions of Theorem
13.6.1 are met. If so, develop the implicit function y(z) in a Taylor series about zp, through second
order terms, as we did in Example 4.

Theorem 13.6.1 Implicit Function Theorem
Let f(z,y) = 0 be satisfied by a pair of real numbers x¢, yo so that f(zo,yo) = 0, and suppose
that f(z,y) is C' in some neighborhood of (g, %0) with

df (o, o)

oy 70

Then f(z,y) = 0 uniquely implies a function y(z) in some neighborhood N of zy such that
y(z0) = yo, where y(z) is differentiable in N. The function f(z,y) being C' means that the
first-order partial derivatives f, and f, are continuous. Also, the neighborhood NN of z is an
open interval on the z-axis, whereas the neighborhood of (z, o) is an open disk in the z,y
plane.

For this problem,
f($7y):$2+4y2_4:07 (:Z:OvyO) = (07 1)

The implicit function y(z) exists if fy(xo,yo) # 0. So,
fy = 8y

and
fy(0,1) =8#0
Therefore, the implicit function exists.

To find the implict function using a Taylor series through second order terms, the first and second
order derivatives of the implicit function must be determined. The first and second derivatives are

given by
gy = Je(@y(@))
V= @)
" _ 2fﬂ»‘fyf$y_f§fyy_f5fm
y () = 73
y
The derivatives are
fz =2z
fmm =2
fy =8y
fyy =8
f:ry =0

19
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Thus,
/ _ _x
y (z) 1
and ) )
1" oA 4y

The Taylor series expansion of the implicit function about (zg, yo) is

/!

y" (wo)
2

y(x) = y(zo) + o/ (zo)(x — xo) +

The value y(xg) is determined by evaluating f(z,y) at .

y(xo) =1
Evaluating y'(z¢) yields
y'(z0) =0
Next, v (z0),
y”(.%'()) _ _
Therefore, the Taylor series expansion is
1
~1— —a?
y(z) 6%

Problem 1(e)

f(a,y) = @(cos(my) + 1) + (¢* + 8)y = 0;
The implicit function exists if f,(zo,y0) # 0.
fy = 2® — masin (1y) + 8

and
fy(=2,1)=0

Therefore, the implicit function does not exist.

Problem 1(g)

flz,y) =2 —y+sin(y) =0
The partial of f wrt y is
fy=rcos(y) —1
f4(0,0) = cos(0) —1=0

Therefore, the implicit function does not exist.

(x —20)*+ ...

(_27 1)

20



James Grisham Analytic Methods Engineering Homework 1

Problem 2(a)

In each case, find y/(z) and y"(x).

flay)=ay—y*=1

which can be rewritten as
flay) =ay—y*—1=0

The derivatives are

f:): =Yy
f:c:r: =0
fy =T — 3y2
fyy = —by
fmy =1
Now, ¢/(z) and y”(z) are
/ fa
y(z) =——> 5
(z) 7, ()
2 x Ty 2 — f2 xTxr
S () = Jafyfay fg;fyy Iy (©)
fy
Inserting the derivatives and simplifying yields
’ _ Yy
2zy
!
)= —"-"-=—=
y'(z) (z — 3y2)3

Alternatively, this problem can be solved using direct implicit differentiation. For example, the
first derivative is

zy +y—3y*y =0

Solving for ¢ yields
Yy

/ - <

which is the same as the previous answer. The same holds for the second derivative.

Problem 2(f)

f,y) = ycos(y) —a® =0
The derivatives are
fo = =327
foz = —62
fy = —ysin (y) + cos (y)
fyy = —ycos (y) + 2sin (y)
foy =0

21
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Inserting these derivatives into (5) and (6),

312
ysin (y) — cos (y)

"z) = — 3z 23 (y cos sin sin — cos 2
(@) = ey (30 (eos (9) + 2sin (1) + 2 (ysin 1) — cos ()°)

Y(r) = -

Exercises 13.7

Problem 1(b)

The given function has a critical point at x = 1. Classify it as a local maximum, local minimum or

horizontal inflection point.
fx)=3@x-1)*+5

This problem can be solved using Theorem 13.7.2 from the text.

Theorem 13.7.2 Mazimum, Minimum Horizontal Inflection Point
Suppose that
f@)=f"(@)=...= f" V(@) =0,

but (") (z) # 0, and that £ (z) is continuous in some neighborhood of x, where n > 2. If n
is even and f(™(z) < 0, then f has a local maximum at z. If n is even and £ (z) > 0, then
f has a local minimum at x. If n is odd, then f has a horizontal inflection point at x.

Differentiating f(z) and evaluating at x = 1 yields

f(z) = 1223 — 3622 + 362 — 12

ff=o0

f"(x) = 362 — 722 + 36

f'(1) =36—-72+36=0
f"(x) =722 - 172

(1) =0
fO(x) =72
FAa) =12

Because n is even, and f(™)(z) > 0, f(x) has a local minimum at z = 1.

Problem 1(d)

f@)=(@+1)(z - 3)(1 - )’

22
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Taking derivatives and evaluating them at x = 1 yields

f'(x) = =52t 4+ 202 — 182% — 4z + 7
f11) =
f(x) = =202 + 6022 — 362 —
(1) =
F"(z) = —6022 + 120z — 36
1) =

Because n is odd, f(z) has a horizontal inflection point at x = 1.

Problem 1(f)

f(x) = exp[8(z — 1)°)

Taking derivatives and evaluating them at x = 1 yields

Fl(x) =40 (x — 1)1 3@
f(1)y=0
F(x) =160 (z — 1) (10 (z—1)°+ 1) (x—1)
f")=0
F"(x) = 160 (z — 1)? (400( 110 1190 (@ — 1)° + 3> (z—1)°
/"(1)=0
FO(x) =320 (x—1) (8000 (2 —1)" + 4800 (z — 1) + 480 (x — 1)° + 3> (z—1)
fPay=o0
FO(x) =320 (320000( 1)% 4+ 320000 (2 — 1) + 72000 (2 — 1)° + 3000 ( — 1)° + 3> A1y
FO)(1) = 960

Since n is odd, f(x) has a horizontal inflection point at =z = 1.

Problem 1(g)

f(@) = (1 - 2)sin[(z® — 1)°]
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Taking derivatives and evaluating them at x = 1 yields

f(@) = 6z (—z +1) (22 = 1) cos (2% = 1)") = sin ((2* — 1)°)

@)=

f"(x) = 36z sin (xﬁ — 3zt + 322 — 1) — 3621 sin (wG — 3zt + 322 — 1)
— 1442° sin (:c6 — 3zt 4322 — 1) + 1442% sin (:c6 — 3zt 4 322 — 1)
+ 21627 sin (2% — 32 + 32% — 1) — 2162 sin (2° — 32 + 327 — 1)
— 14427 sin (xﬁ — 32 + 322 — 1) — 422° cos (xG — 3z + 322 — 1)
+ 1442% sin (:176 — 3% 4 322 — 1) 4 3027 cos (1‘6 — 32 + 322 — 1)
+ 3623 sin ( 6 _ 324 4+ 322 1) + 6023 cos (m6 — 3% 322 — 1)
— 3622 sin ( — 3% + 322 1) 3622 cos (x6 — 3zt + 322 — 1)
— 18z cos (l‘ — 3zt + 322 — 1) + 6 cos (336 — 32t + 322 — 1)

F91) = -192

S— N N N

Since n is even and f(z) < 0, f(x) has a local maximum at x = 1. NOTE: the higher order
derivatives are too large to write so they aren’t reported here. See code in appendiz for all of the
derivatives.

Problem 2(b)

Find all critical points of the function and classify them as local maxima, local minima, or horizontal
inflection points.

1
The local maxima and minima can be found by finding f’(x), setting it equal to zero and solving for
z. Doing so yields a critical point at = 2. Using the test from the previous problem to determine
the type of the critical point yields

f(2)=-2

Therefore, this point is a local max.

The inflection points can be found by finding f”(z), setting it equal to zero and solving for x. Doing
so yields inflection points at
f f

=—3 2, —+2
x + 3+

So, there are three critical points, one is a 1ocal max, and two inflection points.

Problem 2(g)

flz)=2%"" —oco<z<00

Applying the same approach in this problem yields a local minimum at = = 0, a local max found
at = = 2, a horizontal inflection point at z = —/2 + 2, and another horizontal inflection point at
z =+/2 + 2. So, four critical points were found for this problem.
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Exercises 13.8

Problem 1(b)

Apply the Leibniz rule:
d t
i ), z'sin(x) dx

Leibniz Rule The order of differentiation and integration can be interchanged as follows:

d [ b(t) g / /
dt (0 f(z,t)dx = /a(t) af(x,t) dx +b' () f(b(t),t) —d'(t) f(a(t),t) (7)

In this problem

a(t) =3
d(t)=0
b(t) =t
Vt)=1

Also,
0 t o .. _ 0 In(z?) o 0 tin(z) ) _ .t .
5 (2" sin(z)) = g (e sm(a:)) = sm(w)ﬁ (e > = z'In(z) sin(x)

So, inserting everything into Leibniz rule and simplifying yields

d t t
pn x'sin(z) doe = / 2! In(x) sin(z) dz + t* sin(t)
3 3

Problem 1(d)

For this problem

a(a) = —2a*

d(a) = —da

bla) = -«

Via) = -1
Also,

Of 3 au3

O

Using the above derivatives in the definition of Leibniz rule and simplifying yields

d - oz - 3 ax’ —at —8ab
— e dxr = °e™ dr —e + 4ae
do ) 942 —2a8
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Problem 1(f)

For this problem

V(y) =
and
of _ —3xy?
oy w3 +y3

Inserting these into the definition of Leibniz rule,

d ' =z b 3xy? 2
R L - dr —
dy Jy2 23 +y3 g2 3+ y3 Y341

Problem 1(g)

2

d? a
T2 / cos(v? + a?) dv
5a

This problem can be solved by using the Leibniz rule twice. That is,

2 2

d2 a d d a

Applying Leibniz rule to the part inside the square brackets yields

2 2

d2 a d a
/ cos(v? +a®)dv = — [— / 2asin(v? + a?) dv + 2a cos(a* + a?) — 5 cos(26a2)]
5 5

Wa da o

Which can be written as

2 2

2 a a
% / cos(v? + a?) dv = dd/ 2asin(v? + a?) dv — 4a* (2a2 + 1) sin (a4 + a2)
a” Jsa a Jsa

+2cos (a* + a?) + 260asin (2647)

Applying Leibniz rule again,

2 2

d2 a a
T2 / cos(v? 4+ a?) dv = — / (4a® cos(v? + a?) + 2sin(v? + a?)) dv — 4a”sin(a* + a?)
a® Jsa 5a

+ 270a sin(26a?) — 4a?(2a® + 1) sin(a* + a?) + 2 cos(a* + a?)
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Problem 2(b)

Derive the Taylor series of the given function f(z) about z = 0, up to and including terms of second
order, using the Leibniz rule to obtain f’(z) and f”(x).

cos(x) 1 p
f(x)_/_x pr1

Evaluating the integral at x = 0,

|

The equation for a Taylor series is

Through second order terms, about z = 0,

"
0
f@o= 0 + O+ TPy
Next, Leibniz rule is applied in the same way as it was in the preceding problems. Doing this and

inserting the results into the equation for a Taylor series yields

1 T
= dt= Zlog (2 -z 3
Fr1d =y +3log(2) + 2 4+(9(x)

/Cos(a:) 1 B \/gﬂ' 2

—T

Problem 2(d)

1+2x 9
f(x) :/ e~ dt
0

This problem is solved in the same manner as the preceding problem. Doing so yields

5 1922

14+2x .2
= g =14 22—

+0 (x?’)

Problem 2(f)
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Problem 3

Show, by repeated differentiation of the formula

(e.)
1
/ e Tdx =—
0 a

o
/ x"e " dx = n!
0
This problem can be solved using integration by parts.

/udv—uv—/vdu

that

forn=0,1,2,3,....

Letting
Z(n) —/ z"e " dx
0
Now, Z(0) is
I(O)—/ e fdr=—-e" =1
0 0
And,

Letting v = z and dv = e *dx,

Thus,
oo
(1) = / xe “dr = —ze "
0

oo o0
+ / e Tdx
0 0

Evaluating the above integral yields
Z(1) = 1Z(0)

Now

I(2):/ e da
0

Let v = 22 and dv = e *dx,

du =2z dx
v=—e"
Inserting these into integration by parts
oo

oo
/ e dr = —2xe "
0

oo
+/ 2xe T dx = 2
0 0
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So
Z(2) =2I(1)

Now evaluating Z(n — 1),
I(n—1)= / 2" le™ da
0

Letting v = 2"~ ! and dv = e~ % du,

du= (n—1)z" % dx

v=—e "

Inserting these into integration by parts

o0

o0
I(n—1)= / 2" e dr = —z" e
0

o0
—i—/ (n —1)z" % " da
0 0

Next,

Letting u = 2" and dv = e " dz,

Inserting these into integration by parts,

o0

o
Z(n)= / e Tdr = —a"e "
0

o
—I-/ nz" te " dx
0 0

(0.9}
= n/ 2" le ™ dx = nZ(n —1)
0

This recursion implies the following

IPython SymPy Code
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In [1]: Ypylab inline

Populating the interactive namespace from numpy and matplotlib
In [2]: from sympy import *

In [3]: init_printing()

In [4]: from IPython.display import display

In [5]: x = Symbol(’x’)

In [6]: def f(x):
return 1/(2+x**(10))

In [7]: diff(£f(x),x,20).expand().subs(x,0)
Out [7]:

304112751022080000
In [8]: series(f(x), x0=0, n=40)

Out [8] :

In [9]: def f(x):
return cos(x**(20))

In [10]: plot(f(x), (x,0,1.25), ylim=[-1.2,1.2])

10

05

Out[10]: <sympy.plotting.plot.Plot at 0x7f6b5a472dd8>




In [11]: for n in range(0,40):

© 00 NO O WN -
O O O OO OO oOOo

=
= O

DWW wWwwWwwWwwWwWWwWwWNNNNNDNNMNMNNNDNDNDEERRFR P B B2 B
O ©W O NO O P WNE O OWONOOO P WNEFE O O OWNO U WwN
[elNeolNeoleolNeolNeolNeolNeolNeNeolNeolNeolNolNolNolNeolNeoNeolNeolNolollolMeolNeolNeolNolNolNololNe)

In

In

In

print ("{} {}".format(n+l, diff(f(x), x, nt+l).subs(x, 0)))

-407957641623948867172805634798057947136000000000

series(f(x), n=138)

Exercises 13.6
[12]: y = Symbol("y")

[13]: def f(x, y):
return x**2+4xyx*x2-4

[14]: mpmath.splot(f, [-5,5]1,[-5,5])



In [15]:

Out[15] :

In [16]:

Out[16]:

In [17]:

Out[17]:

In [18]:

Out[18]:

In [19]:

OQut[19]:

T 140
120

diff (£ (x, y), x)

2z
diff (£ (x, y), y)

8y
diff(£(x, y), x, y)

0

simplify ((-32xx**2 - 128*y**2)/(512%y**3))

x4+ 4y°
16y3

simplify(Rational (-1/2%64/512))



In

In

Out [21]:

In

Out [22] :

In

In

Out [24] :

In

Out [25] :

In

In

In

In

In

In

In

Out [32] :

In

Out [33]:

In

[20]:

[21]:

[22]:

[23]:

[24] :

[25]:

[26]:

[27]:
[28]:
[29]:
[30]:
[31]:

[32]:

[33]:

[34]:

def f(x, y):
return (x*(cos(pi*y)+1) + (x**3 + 8)x*y)

diff (£ (x,y),y)

23 — masin (1y) + 8

_.subs(x,-2) .subs(y, 1)

def f(x, y):
return x - y + sin(y)

diff(£(x, y), y)

cos(y) — 1

_.subs(y,0)

def f(x,y):
return x*y - y*x3 - 1

fx = diff(£(x,y),x,1)
fxx = diff (£(x,y),x,2)
fy = diff(f(x,y),y,1)
fyy = diff (£ (x,y),y,2)
fxy = diff(f(x,y),x,y)

simplify(-fx/fy)

__ Yy
T — 3y>?

simplify ((2xfx*fy*fxy - fx**2xfyy - fy**2%fxx)/(fy**3))

2zy
(w — 3y2)°

pprint (£x)



In [35]: y = Function(’y’) (x)

In [36]: dydx = solve(diff(x*y - y**3-1, x, 1), diff(y,x,1))[0]

In [37]: simplify(solve(diff (x*y - y**3-1, x, 2), diff(y,x,2))[0].subs(diff(y,x,1),dydx))
Out [37]:

2zy(z)
(x - 3y*(x))°

In [38]: y = Symbol(’y’)

In [39]: def f(x,y):
return y*cos(y) - x**3

In [40]: fx = diff(£(x,y),x,1)

In [41]: fx
Out [41]:
—322
In [42]: fxx = diff(£(x,y),x,2)
In [43]: fxx
Out [43]:
—6z

In [44]: fy = diff(f(x,y),y,1)

In [45]: fy
Out [45] :
—ysin (y) + cos (y)
In [46]: fyy = diff(f(x,y),y,2)
In [47]: fyy
Out [47]:
—ycos (y) + 2sin (y)
In [48]: fxy = diff(f(x,y),x,y)
In [49]: fxy
Out [49]:

In [50]: simplify(-fx/fy)



Out [50] :

32

ysin (y) — cos (y)

In [51]: simplify((2xfx*fy*fxy - fx*k+x2xfyy - fy**+2%fxx)/(fy**3))

Out [51]:

3¢ 3 (y cos sin sin — cos 2
) e (B (o) + 2sin (6) + 2 ysin () = cos (0)°)

3 Exercises 13.7

In [52]: ff = Function(’f’) (x)

In [563]: ff

3k(x-1)**4 + 5

In [54]: plot(ff, x1im=[0.5,1.5], ylim=[2,8])

8 -
7L
6|
—_ , . , .
0.6 0.8 140 12 14

Out [64] : <sympy.plotting.plot.Plot at 0x7f6b59168d68>
In [55]: diff(ff,x).expand()
Out [55] :

1227 — 362% 4 36z — 12
In [56]: ff = (x+1)*(x-3)*(1-x)**3

In [57): plot(ff)



Out [67] :
In [58]:

Out [58] :

In [59]:

Out [69] :

In [60]:

Out [60] :

In [61]:

Out[61]:

In [62]:

Out [62] :

200000

150000

100000

50000

—15 -10 -5 1]

=50000

—100000

<sympy.plotting.plot.Plot at 0x7f6b591686a0>

simplify(diff (£ff,x,1))

—52* + 202 —182° — 4z + 7

_.subs(x,1)

simplify(diff (£f,x,2))

—2023 4 6022 — 362 — 4

_.subs(x,1)

simplify(diff (£f,x,3))

—60x2 + 1202 — 36



In [63]:

Out [63] :

In [64]:

In [65]:

Out [65] :

In [66]:

In [67]:

_.subs(x,1)

24
ff = exp(8*(x-1)*%5)

diff (ff,x,1) .simplify ()

40 (z — 1)* 817

def classify_pt(inp_func, x0, maxIter=10, exp_choice=False):

c=1
status=False
pt_type = None
while ¢ < maxIter:
fpx = diff(ff,x,c)
fpx0 = fpx.subs(x,x0).simplify()

print ("\n--—-----———--—-——————— ")
if ¢ ==

print ("{}st order derivative:".format(c))
elif c ==

print("{}nd order derivative:".format(c))
elif c==3:

print ("{}rd order derivative:".format(c))
else:

print ("{}th order derivative:".format(c))
print("-——-—-—-—m oo ")

if exp_choice:
display (expand (fpx))
else:
display(simplify(fpx))
display(simplify(£fpx0))
if fpx0 !'= 0 and c >= 2:
if c%2==0 and fpx0 < O:

print("Local maximum found at x

pt_type="Local max"
elif c¢/2==0 and fpx0 > O:

print("Local minimum found at x

pt_type="Local min"
elif c¢%2!=0:

{}".format (x0))

{}".format (x0))

print ("Horizontal inflection point found at x =
pt_type="Inflection point"

else:

print ("Error: unable to classify.")

status=True
break
c+=1
return pt_type

classify_pt(ff,1)

{}.".format (x0))



(102400000 (z — 1)*° 4102400000 (2 — 1) + 23040000 (z — 1)"° + 960000 (z — 1) + 960) S’

960

Horizontal inflection point found at x = 1.
Out[67]: ’Inflection point’
In [68]: ff = (1-x)*sin((x**2-1)*%*3)

In [69]: classify_pt(ff,1,exp_choice=True)



—129622" sin (2° — 32 + 32 — 1)+12962%° sin (2% — 32" + 32 — 1)+10368z"? sin (2% — 32" + 32 — 1) —10368z"® sin (2° —

—192
Local maximum found at x = 1
Out[69]: ’Local max’

In [70]: plot(ff,xlim=[0,1.5],ylim=[-2,2])

10



20 -

15}

10

05

0.0

-1.0F

15}

0.2 0.4 0.8 10 1?\14\

Out [70]: <sympy.plotting.plot.Plot at 0x7f6b590609e8>

In [71]: ff = 1/(x**2 - 4%x + 5)

In [72]: def find_crit_pts(input_function):
crit_pts = solve(diff (input_function,x),x)
infl_pts = solve(diff (input_function,x,2),x)

cpt

= [

pt_type = [I
pt_counter = 1

for

for

pt in crit_pts:

print ("\n
print ("Point {} at x = {}".format(pt_counter, pt))

print ("
cpt.append(pt)

pt_type.append(classify_pt(input_function, pt.simplify()))
pt_counter += 1

pt in infl_pts:

ll)

\n")

print ("\n
print ("Point {} at x = {}".format(pt_counter, pt))

print ("
cpt.append (pt)

pt_type.append(classify_pt(input_function, pt.simplify()))
pt_counter += 1

return (cpt, pt_type)

In [73]: find_crit_pts(ff)

Point 1 at x = 2

11

ll)

\n")



1 2 2
x4 —4x
-2
Local maximum found at x = 2
Point 2 at x = -sqrt(3)/3 + 2
1st order derivative:
—2x +4
(22 — 4z +5)°
3V3
8
2nd order derivative:
1 2 2
x4 —4x
0
3rd order derivative:
24

B 27v3
16

12



Horizontal inflection point found at x = -sqrt(3)/3 + 2.

Point 3 at x = sqrt(3)/3 + 2

1
x4 — 4x

0

3rd order derivative:
24
(22 — 4z +5)° (z=2) <$2_4x_2(m_2)2+5>
273
16

Horizontal inflection point found at x = sqrt(3)/3 + 2.

Out[73]: ([2, -sqrt(3)/3 + 2, sqrt(3)/3 + 2],
[’Local max’, ’Inflection point’, ’Inflection point’])

In [74]: ff = x**2xexp(-x)

In [75]: find_crit_pts(ff)

Point 1 at x = 0

13



Local minimum found at x = 0O

Point 2 at x = 2

2
€2
Local maximum found at x = 2
Point 3 at x = -sqrt(2) + 2
1st order derivative:
z(—z+2)e”
—2+2V/2
e—V2+2

14



(—x24—6x——6)6_$

2V2

e—V2+2

Horizontal inflection point found at x = -sqrt(2) + 2.

Point 4 at x = sqrt(2) + 2

(—x24—6x——6)6_m
2V2
eV2+2
Horizontal inflection point found at x = sqrt(2) + 2.

Out[75]: ([0, 2, -sqrt(2) + 2, sqrt(2) + 2],
[’Local min’, ’Local max’, ’Inflection point’, ’Inflection point’])
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4 Exercises 13.8
In [76]: t = Symbol("t")
In [77]: alpha = Symbol("alpha")
In [78]: diff(x**t*sin(x),t)
Out [78]:
2" log (z) sin ()

In [79]: exp((-2*alpha**2)**3).simplify()

Out [79] :
e 8"
In [80]: diff(x/(x**3 + y**3),y)
Out [80] :
3xy?
(@)

In [81]: simplify(-2*yxy**2/((y**2)**3+y**3))

Out [81]:

In [82]: a = Symbol("a")
In [83]: diff(-5*cos(26*a**2),a)
Out [83]:
260a sin (26a°)
In [84]: part2b = integrate(1l/(t**3+1),(t,-x,cos(x))) .simplify()
In [85]: part2b.subs(x,0)

Out [85] :

1 \/gﬂ'
2o (2) &+ Yo
3 log(2) + =

In [86]: help(series)

Help on function series in module sympy.series.series:

series(expr, x=None, x0=0, n=6, dir=’+’)

Series expansion of expr around point ¢

x = x0°.
See the doctring of Expr.series() for complete details of this wrapper.

In [87]: series(part2b, n=3)

16



Out [87] :
2

+110g(2)+x—£+0(:r3)

V3w
9 3 4

In [88]: part2d = integrate(exp(-x*t**2),(t,0,1+2*x))

In [89]: part2d.simplify().subs(x,0)

Out [89] :
1
In [90]: series(part2d,n=3)
Out [90] :
1+5—m—19m2+0(x3)
3 10

In [91]: part2f = integrate(cos(x*t**2),(t,-x,3*sin(x))).simplify()
In [92]: part2f

Out [92] :

In [93]: series(part2f,n=3)

Out [93] :
I (3) 3
+7C)(x )
(%)
In [94]: integrate(x**3*exp(-x),(x,0,00))
Out [94] :
6

In [107]: integrate(exp(-a*x),x)

Out [107]:

x fora=0
{ — % e~ otherwise
In [111]: diff(exp(-a*x),x)
Out[111]:
—ae

In [112]: diff(_,a)

17



Out[112]:

In [113]:

Out[113]:

In [114]:

Out[114]:

In []:

diff(_,a)

—az’e™ ™ 4 2xe”

diff(_,a)

azxle™ ™ — 3g2e0"
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