
Introduction
Computational Tools

Implementation
Wrapping up

The Deformation Method for Grid Adaptation

James Grisham1, Nandakumar Vijayakumar1, Ben Hildebrand2

Chen Xi2

1Mechanical and Aerospace Engineering

University of Texas at Arlington

2Department of Mathematics

University of Texas at Arlington

MATH 5392 Final Presentation, May 2014

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Outline

1 Introduction
Motivation
The process
Goals

2 Computational Tools
Pointwise
Fluent
Deformation method code

3 Implementation
Test case
Detailed process
Results

4 Wrapping up

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Motivation
The process
Goals

Why adapt?

For numerical solution of
partial differential equations,
an adequate discretization
(or mesh) is required.

Using adaptive grids, the
quality and accuracy of the
numerical solution can be
improved.

Figure: Contours of Mach number.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Motivation
The process
Goals

Why use the deformation method?

Many moving grid techniques are capable of producing
negative volumes (e.g., linear elasticity).

The deformation method is mathematically rigorous, unlike
the physics-based analogies.

It has been mathematically proven that the deformation
method will not produce negative cell volumes. However,
there are always issues with the numerics.

The changes in the point distribution are propagated
throughout the entire mesh.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Motivation
The process
Goals

Explanation of the adaptation process

1 Generate geometry and
mesh.

2 Perform flow solve.

3 Adapt grid.

4 Re-run flow solve to check
quality of deformed grid.

Generate
mesh

Flow solve

Adapt grid

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Motivation
The process
Goals

Deformation method process

Form monitor function. In this case,

f0(x) =
1

1 + C |∇p(x)|
(1)

where C is a constant that controls the intensity of the
adaption.

Make the monitor function a function of time.

f (x, t) = 1− t + t f0(x) (2)

where 0 ≤ t ≤ 1.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Motivation
The process
Goals

Deformation method process, cont.

Solve Poisson’s equation with Neumann BCs (∇w · n̂ = 0).

∇2w = −
∂

∂t

(

1

f (x, t)

)

(3)

Compute node velocities (V).

u = ∇w (4)

and
V = f (x, t)u = f (x, t)(∇w) (5)

Solve ODEs for new node coordinates.

dx

dt
= V (6)

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Motivation
The process
Goals

Goals

Implement the deformation method for 2D structured grids.

Perform inviscid and viscous flow solves to use as baseline
data for adaptation.

Adapt to different flow features in different speed regimes
(i.e., boundary layers and shock waves).

Compare deformation-based adaptation with ANSYS Fluent’s
local refinement method.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Motivation
The process
Goals

Responsibilities

James Grisham

Code development.
Grid generation.

Nandakumar Vijayakumar

Grid generation.
CFD simulations.
Fluent adaptation.

Ben Hildebrand

Poisson solver.
RK2 ODE solver using
MATLAB.
Understanding the math.

Chen Xi

Understanding the math.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Pointwise
Fluent
Deformation method code

Grid generation

A series of Pointwise Glyph script were developed to generate
viscous and inviscid O- and C-grid topologies for an airfoil.

Glyph script was also developed to generate grid for a
supersonic duct case.

Grids were exported in CGNS (CFD General Notation System)
format.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Pointwise
Fluent
Deformation method code

Flow solve

ANSYS Fluent was used to perform inviscid and viscous flow
solves.

Plans to use a NASA Langley-developed flow solver named
CFL3D in the near future.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Pointwise
Fluent
Deformation method code

Deformation method code

General code was developed using C++.

Reads and writes CGNS-formatted grid and solution files.

Object-oriented approach with a general C++ class that
contains all the necessary methods.

OOP allowed for stand-alone testing of each method.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Example test case

Supersonic duct case was used to test the code.

M = 3.5

Flow Direction

-->

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Initial Mesh

150 × 80 structured grid

Figure: Initial grid. Figure: Initial grid close-up.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Fluent output

Interesting flow features.

Reflecting oblique shocks.

Shock-boundary layer
interaction.

Figure: Contours of static pressure.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Importing grid and data

C++ code is linked with the CGNS libraries so that binary
files can be read and written.

Majority of pre-processing codes, flow solvers, and
post-processing codes are capable of reading and writing
CGNS files.

Fluent writes flow solve data in an unstructured format.

Method is included in general class that re-orders the grid one
time as a pre-processing step.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Computing gradient of pressure

Gradient of pressure must be computed to form the monitor
function given by Eq.(1).

Accomplished using the finite difference method with the
following inverse transformation for nonuniform grids:

x = x(ξ, η) (7a)

y = y(ξ, η) (7b)

Following metrics are computed:

∂x

∂ξ
,
∂x

∂η
,
∂y

∂ξ
,
∂y

∂η

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Computing gradient of pressure, cont.

Jacobian determinant is then computed:

J =
∂(x , y)

∂(ξ, η)
=

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

∣

∣

∣

∣

∣

∣

∣

∣

(8)

Partial derivative of some variable φ with respect to x is then
given by

∂φ

∂x
=

1

J

(

∂φ

∂ξ

∂y

∂η
−

∂φ

∂η

∂y

∂ξ

)

(9)

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Gradient results

Figure: Contours of p. Figure: Contours of |∇p|.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Forming monitor function

Monitor function is formed
as follows:

fi ,j =
1

1 + C |∇pi ,j |
(10)

Monitor function is small
where gradients are large.

Used to control cell size.

Figure: Contours of the monitor function.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Transformations

Process can be thought about using three grids: the original
nonuniform grid in the physical plane, a uniform grid in the
computational plane that will be deformed, and a uniform grid in
the computational plane that remains unchanged.

Monitor function is computed on the nonuniform grid.

Deformation takes place in the computational plane.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Monitor function on transformed grid

Figure: Monitor function in the computational plane.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Monitor function as a function of time

Choose number of timesteps and loop over time.

∇2w = −
∂

∂t

(

1

f

)

Monitor function must be evaluated at two times so that a
finite difference representation of the time derivative can be
computed.

f n = 1 + tn − tnf0 (11a)

f n+1 = 1 + tn+1 − tn+1f0 (11b)

Monitor functions at each time must then be normalized on
the uniform grid.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Normalization

The monitor functions at each time are normalized so that the
sum of each cell area is equal to the total area of the domain
as follows:

F (x , y , t) =

∫∫

1

f (x , y , t)
dx dy

A
f (x , y , t) (12)

where F is the normalized monitor function.

Integral is accomplished using first-order accurate Gaussian
quadrature.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Forming RHS of Poisson’s equation

Now, the RHS of Poisson’s equation can be formed using
first-order accurate forward differencing.

−
∂

∂t

(

1

f

)

≈ −

1

F n+1
−

1

F n

∆t
(13)

Next, Poisson’s equation must be solved on the uniform grid.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Solution of Poisson’s equation

Neumann boundary conditions are enforced using ghost nodes.

∇w · n̂ = 0 (14)

Solution is accomplished using SOR.

General difference equation is given by

wk+1
i ,j =

1

4

(

wk
i+1.j + wk+1

i−1,j + wk
i ,j+1 + wk+1

i ,j−1 − h2gi ,j

)

(15)

wk+1
i ,j = wk

i ,j + ω(wk+1
i ,j − wk

i ,j) (16)

where k is the iteration level, ω is the relaxation parameter,
and gi ,j is the RHS of the original Poisson equation.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Solution of ODEs

Node velocities are determined as follows:

u = ∇w (17)

dx

dt
= Vx = F nux (18a)

dy

dt
= Vy = F nuy (18b)

Solution accomplished using Euler’s method:

xn+1 = xn + Vx∆t (19a)

yn+1 = yn + Vy∆t (19b)

Continue looping until t = 1.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Transforming back to physical domain

Uniform grid in
computational domain has
been deformed.

Deformed grid must be
transformed back to the
physical domain.

Accomplished by
interpolating the
transformation.

Figure: Deformed grid in the

computational plane.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Transforming back to physical domain, cont.

Figure: Deformed grid in the

computational plane.

Figure: Deformed grid in the physical

plane.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Comparison between initial and deformed

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Test case
Detailed process
Results

Comparison between initial and deformed, cont.

Figure: Contours of static pressure and the

initial mesh.

Figure: Contours of static pressure and the

deformed mesh.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Summary

A general C++ code was developed that uses the deformation
method to adapt 2D, structured grids.

Code is extensible, easily modifiable and could easily be
applied to image processing.

Code reads and writes CGNS files that are compatible with
most CFD software solutions.

Deformation method guarantees positive cell volumes
(dependent upon numerics).

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Potential issues

Deformation method creates
skewed cells that may cause
issues with the flow solver.

Could solve another elliptic
equation to improve the
skewness as a
post-processing step.

Even easier, could load the
grid into Pointwise and use
their elliptic smoothing
capabilities. Figure: Close-up of deformed grid near

shock.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Next steps

Actually run the deformed grid in Fluent.

Apply the code to a C-grid and O-grid (Fluent is causing an
issue).

Develop code that adapts unstructured grids using FEM.

Develop code for 2D moving meshes and compare with spring
analogy code.

Use the current code in conjunction with CFL3D to study
shock-boundary layer interation.

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

Introduction
Computational Tools

Implementation
Wrapping up

Questions?

Grisham & Vijayakumar & Hildebrand & Xi Deformation Method

	Introduction
	Motivation
	The process
	Goals

	Computational Tools
	Pointwise
	Fluent
	Deformation method code

	Implementation
	Test case
	Detailed process
	Results

	Wrapping up

