
AE 6345: Turbulence

Homework 4

James Grisham

December 7, 2015

Problem 1

Problem Statement

(Modified 10.2)

(a) Consider the self-similar temporal mixing layer where the mean lateral velocity 〈V 〉 = 0 and
the axial velocity 〈U〉 depends on y and t only. (Note: Such a flow is difficult to produce in
practice; instead, a spatially evolving miking layer is easier to produce – FKL.) The velocity
difference is Us, so that the boundary conditions are 〈U〉 = 0.5Us at y = ±∞. The thickness
of the layer δ(t) is defined such that 〈U〉 = 2

5Us at y = δ/2. The mixing length model is
applied to this flow, with the mixing length being uniform across the flow and proportional
to the thickness, namely,

`m = αδ

where α is a specified constant. Starting from

∂〈U〉
∂t

= −∂〈uv〉
∂y

show that the mixing length hypothesis implies that

∂〈U〉
∂t

= 2α2δ2
∂〈U〉
∂y

∂2〈U〉
∂y2

(b) Show that the above equation admits a self-similar solution of the form

〈U〉 = Usf(ξ)

where ξ = y/δ and that f(ξ) satisfies the ordinary differential equation

−Sξf ′ = 2α2f ′f ′′

where S ≡ U−1s dδ/dt is the spreading rate.

(c) Justify the assumption for `m given in the first equation.
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Solution

According to Prandtl’s mixing-length hypothesis,

−〈uv〉 = νT
∂〈U〉
∂y

and

νT = `2m

∣∣∣∣∂〈U〉∂y

∣∣∣∣
Inserting the above into the Reynolds equation,

∂〈U〉
∂t

=
∂

∂y

(
`2m

∣∣∣∣∂〈U〉∂y

∣∣∣∣ ∂〈U〉∂y

)
(1)

In the mixing layer, ∂〈U〉/∂y > 0. So, (1) becomes

∂〈U〉
∂t

= α2δ2
∂

∂y

([
∂〈U〉
∂y

]2)
(2)

Evaluating the derivative and simplifying yields the desired result:

∂〈U〉
∂t

= 2α2δ2
∂〈U〉
∂y

∂2〈U〉
∂y2

(3)

Inserting the self similar solution, and noting that Us is constant,

U−1s
∂

∂t
(f(ξ)) = 2α2δ2

∂f(ξ)

∂y

∂2

∂y2
(f(ξ)) (4)

The differentiation will be carried out term-by-term. The first term is

∂f(ξ)

∂t
=
df

dξ

∂ξ

∂t
(5)

Since ξ = y/δ and δ = δ(t),
∂ξ

∂t
= −yδ−2dδ

dt

Therefore,
∂f

∂t
= −ξδ−1dδ

dt
f ′

and

U−1s
∂f(ξ)

∂t
= −Sξδ−1f ′ (6)

Next,
∂f(ξ)

∂y
=
df

dξ

∂ξ

∂y
=

1

δ
f ′ (7)

The second derivative can be expanded as follows:

∂

∂y

(
∂f

∂y

)
=

∂

∂y

(
df

dξ

)
∂ξ

∂y
+
∂f

∂y�
�
��7

0
∂2ξ

∂y2
=
d2f

dξ2

(
∂ξ

∂y

)2

=
1

δ2
f ′′ (8)
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Inserting (6), (7), and (8) into (4),

−Sξδ−1f ′ = 2α2δ2
1

δ
f ′

1

δ2
f ′′ (9)

Simplifying,

−Sξf ′ = 2α2f ′f ′′

The fact that the PDE reduces to an ODE means that the flow is self-similar.

I believe that the assumption for the length scale can be justified using the fact that the growth
rate of the mixing layer is linear.

Problem 2

Problem Statement

(Modified 10.14)

(a) Consider the Spalart-Allmaras model applied to high Reynolds number homogeneous turbu-
lence. Show that

D̄νT

Dt
= ∇ ·

(
νT
σv
∇νT

)
+ Sv (10)

reduces to
dνT
dt

= Sv(νT ,Ω) = cb1νTΩ (11)

where cb1 is a constant and Ω is the mean vorticity.

The problem in the book requires an argument that the laminar viscosity ν and the distance
to the nearest wall `w are not relevant quantitites. As a guide that may help you to tackle the
reduction of (10) to (11), such a situation also results in isotropy. You already have experience
with homogeneous turbulence, i.e., you should be able to reduce those derivatives on the left-
hand side. You then need to explain (OK to explain heuristically without derivation) how
that happens.

(b) Comment on the above equation for irrotational mean straining. Hint: when a flow is irrota-
tional, is there vorticity? Think about the Kelvin-Helmholtz theorem. Think about vorticity
creation in viscous flows. Then, think about the above equation. (I am deliberately making
you think about this due to the large amount of erroneous thoughts regarding vorticity and
vortices.)

For self-similar homogeneous turbulent shear flow (in which Ω and S are equal), from the
relation defining the turbulent viscosity

−〈uv〉 = νT
∂〈U〉
∂y

show that νT evolves with

cb1 =

(
P
ε
− 1

)(
Sk
ε

)−1
(c) Using experimental data (Table 5.4 on pg. 157), estimate cb1 according to the above equation.
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Solution

In isotropic, homogeneous turbulence, the turbulent viscosity should be uniform. Thus, ∇νT = 0.
Therefore,

dνT
dt

= Sv

According the the original paper by Spalart and Allmaras, S = 0 in isotropic turbulence so I’m
not sure how the S = cb1νTΩ comes about. Actually, Ω = (2ΩijΩij)

1/2 which should be zero in
homogeneous, isotropic turbulence.

An irrotational flow is one in which the curl of the velocity is zero. That is

εijkuk,j = 0

The rate-of-rotation tensor is

Ωij =
1

2
(Ui,j − Uj,i)

If the fluid is irrotational, the rate-of-rotation tensor should be zero. Thus, dνT /dt = 0. This agrees
with what Spalart and Allmaras said in their paper.

Rearranging the expression for cb1,

cb1 =
1

Sk
(P − ε)

Assuming k = −〈uv〉, and differentiating both sides of the equation (∂〈U〉/∂y = const),

dk

dt
=
dνT
dt

∂〈U〉
∂y

Now, inserting dνT /dt = cb1νTΩ and remembering that Ω = S for this case,

dk

dt
= cb1νTS

∂〈U〉
∂y

= cb1Sk

Now, from the text,
dk

dt
= P − ε

Inserting this into the previous equation and rearranging,

cb1 =
1

Sk
(P − ε) = cb1 =

(
P
ε
− 1

)(
Sk
ε

)−1
Using the table, three estimates for cb1 were determined → 0.123, 0.115, 0.093. The first two are
quite close to the value quoted by Spalart and Allmaras.

4



James Grisham AE 6345: Turbulence Homework 4

Problem 3

Problem Statement

(Modified 13.2)

(a) Let U(x) have the Fourier transform Û(κ) and U(x) have the Fourier transform Û(x) =
Ĝ(κ)Û(κ). Show that the Fourier transform of the filtered residual u′(x) is

û′(κ) ≡ F
{
u′(x)

}
= Ĝ(κ)

[
1− Ĝ(κ)

]
Û(κ)

(b) In a general three-dimensional flow, the above operations are performed on vectors, so that
the residual is actually written as u′(x). Explain in your own words why the residual stress
(also known as the subgrid stress) u′v′ is or is not the same as the Reynolds stress 〈uv〉.

(c) Consider an isotropic, homogeneous turbulence field in a three-dimensional interval 0 6 x 6
L. The text suggests a criterion for the maximum resolvable wavenumber as

κmax =
πNmax

L

based on numerical considerations, where Nmax is the number of the uniformly spaced grid
points over the dimension L. To relate this numerical relationship to physics, the text suggests
that isotropic turbulence is adequately resolved with

κmaxη > 1.5

where η ≡ (ν3/ε)1/4 is the Kolmogorov length scale, ν is the kinematic viscosity, and ε is the
rate of dissipation of TKE. The dissipation decays as a power law:

ε(t) = ε0

(
t

t0

)−(n+1)

Derive an expression for the time rate of change of κmax in terms of initial conditions and ν.

(d) Derive an expression for the grid spacing h = L/Nmax as a function of time and the above
variables. Based on your results, for decaying homogeneous, isotropic turbulence, are more
grid points needed at the beginning than at the end of the computations?

Solution

u′(x, t) = U(x, t)− U(x, t)

Taking the Fourier transform,

F
{
u′(x, t))

}
= û′(κ) = Û(κ)−F

{
U(x, t)

}
where

U = G ∗ U

By the convolution theorem,
F{G ∗ U} = Ĝ(κ)Û(κ)
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Therefore,

û′(κ) =
[
1− Ĝ(κ)

]
Û(κ) (12)

The above is the expression for the residual. The result for the filtered residual will be derived
next. The filter can be applied in the time domain via convolution or in the wavenumber domain
via multiplication.

u′(x, t) = G ∗ u′

Taking the Fourier transform,
û
′
(κ) = Ĝ(κ)û′(κ)

Inserting (12),

û
′
(κ) = Ĝ(κ)

[
1− Ĝ(κ)

]
Û(κ) (13)

The Reynolds stress is an artifact of the averaging applied to the Navier-Stokes equations. The
subgrid stress is a result of the filtering procedure applied to the Navier-Stokes. The two terms are
different because the operations applied to the NS are different.

Inserting the dissipation as a function of time and rearranging yields

κmax(t) > 1.5

(
ε0(t/t0)

−(n+1)

ν3

)1/4

Taking the time derivative (using Mathematica),

dκmax

dt
> −0.375(n+ 1)

t


(
t
t0

)−1−n
ε0

ν3


1/4

Inserting the expressions in the problem statement, and manipulating

1

h2
dh

dt
>

0.375(n+ 1)

πt

ε0
(
t
t0

)−(n+1)

ν3


1/4

I believe more grid points are needed at the beginning.
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Problem 4

Problem Statement

Modified (13.10)

(a) The Mansour-Wray energy spectrum can be written as

E(κ) =
q2

2A

1

κσ+1
p κσ

exp

[
−σ

2

(
κ

κp

)2
]

Compare this against the expression for the Kolmogorov energy spectrum:

E(κ) = Cε2/3κ−5/3

The Mansour-Wray spectrum possesses certain advantages in having a number of parameters
for “tweaking” the spectrum, such as q, κp, A and σ. For the purpose of this problem, let the
Mansour-Wray spectrum be expressed as

E(κ) =
B

κσ
exp(−κ2)

Consider the use of a sharp spectral filter whose spectral characteristics are defined by

Ĝ(κ) =

{
1 |κ| < κc

0 |κ| > κc

Apply this filter to the Mansour-Wray spectrum and obtain an expression for the energy in
the residual motion (i.e., the energy in the subgrid scal), 〈kr〉.

(b) Let σ = 5/3. Suppose that it is desired to capture 80% of the energy via LES; in other words,

〈kr〉
k

= 0.2

Introducing the turbulent lengthscale L and the Kolmogorov timescale τη, such that k =
(νL/τη)

2/3, simplify the above expression.

(c) Further simplify the result by letting exp(−κ2c) = 1 (i.e., assume that κc is infinitely large)
to obtain an expression for κcL.

(d) Defining the filter width ∆ = π/κc and writing `EI = aL where a is a constant, obtain an
expression for the filter width in terms of `EI .

Solution

The Mansour-Wray spectrum seems much more complicated than the Kolmogorov energy spectrum.
The filter can be applied via multiplication in the wavenumber domain.

E(κ) = Ĝ(κ)2
B

κσ
exp(−κ2)
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The energy in the subgrid scale should be the energy that was filtered out in the above equation.
That is,

〈kr〉 =

∫ ∞
0

(E(κ)− E(κ)) dκ =

∫ ∞
0

(
1− [Ĝ(κ)]2

) B

κσ
exp(−κ2) dκ

Introducing the turbulent lengthscale and Kolmogorov timescale along with the given expression
for k,

〈kr〉 =
1

5
k =

1

5

(
νL

τη

)2/3

=

∫ ∞
0

(
1− [Ĝ(κ)]2

) B

κ5/3
exp(−κ2) dκ

Further simplification can be carried out by assuming that κc →∞ (i.e., exp(−κ2c)→ 1). This will
be applied after integrating. The transfer function for the sharp spectral filter is

Ĝ(κ) = H(κc − |κ|)

where H(κ) is a Heaviside step function. Since H(κ)2 = H(κ),

1

5

(
νL

τη

)2/3

=

∫ ∞
0

(1−H(κc − κ))Bκ−5/3 exp(−κ2) dκ

The absolute value of κ was dropped since the bounds of integration don’t include any negative
values. Furthermore, 1−H(κ) = H(−κ).

1

5

(
νL

τη

)2/3

=

∫ ∞
0

H(κ− κc)Bκ−5/3 exp(−κ2) dκ

Using Mathematica to evaluate the integral yields

1

5

(
νL

τη

)2/3

=
3

2

(
e−κc

2

κc2/3
− Γ

(
2

3
, κc

2

))
=

3

2

(
1

κc2/3
− Γ

(
2

3
, κc

2

))
where Γ stands for the incomplete gamma function:

Γ(a, x) ≡
∫ ∞
x

ta−1e−t dt

So,

1

5

(
νL

τη

)2/3

=
3

2

(
1

κc2/3
−
∫ ∞
κ2c

t−1/3e−t dt

)
Again, assuming that κ2c →∞,

1

5

(
νL

τη

)2/3

=
3

2

(
1

κc2/3

)
Rearranging,

κcL =
20.5396B3/2τη

ν

Inserting κc = π/∆, L = `EI/a and rearranging,

∆ =
`EIπν

20.5396 aB3/2τη
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