AE 5381: Boundary Layers
Homework 2

James Grisham

October 9, 2014

Problem 2.1

Problem Statement

Assume that the velocity profile over a flat plate may be approximated as

Ui — tanh [2.65 (%)]

Calculate d(x) and Cy(x).

Solution

The dimensionless velocity profile given in (1) is shown in Figure 1.

y/o

Figure 1: Dimensionless velocity profile.
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Application of the integral momentum equation to a control volume in the boundary layer of length
dx and height H, where H > §, yields a differential equation that relates the inviscid velocity
(Ue), the displacement thickness, momentum thickness, and skin friction coefficient. This equation
is

do 1 dU,

- + -

de U, dx

where the momentum thickness is
)
U U
= 1—— | —d 3
/ ( Ue) oy 3)

* Uw_ﬁ
(2046 - = (2)

the displacement thickness is

and the skin friction coefficient is

Cr=+—= (5)
3pU2

Assuming the inviscid solution is available (i.e., U, is known), we have one equation, (2), and three

unknowns: 6, 6*, and Cy. However, if the velocity profile is known (or assumed), then (3), (4), and

(5) are all known.

The inviscid solution for a flat plate corresponds to a uniform stream with a constant velocity in
the z-direction. The flat plate corresponds to one streamline. Thus, U, is a constant. Also, the
bottom wall is solid so v,, = 0. Inserting these into (2) yields

) Cy

- o (6)

Letting a = 2.65 and Inserting the given velocity profile into (3),

o= [ (1 [*2]) tann [ 2] ay

Using Mathematica! to evaluate the integral yields

o d In(cosh(a — 111(0(:18}1((1 — tanh(a))))) _ 0.3739 5

The shear stress on the wall is given by

2 (2.65
du 2.65 U, sech (Ty>
oy )

So,
265U,

Tw = 5

!Code is listed in the appendix.
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Thus,
5.3
= 7
T i (7)
Now, (6) becomes
45 14.1735
il ®
PUe

Cross multiplying and integrating,

/5d5:/14-1735“dx
pUe

[
0(z) = 5.3242
(r) =5.3 pUe+C

Since this problem involves a flat plate, the boundary layer thickness at © = 0 is zero. There-

fore,
TR
o(x) = 5.3242
() oryia

This equation can be recast in terms of Reynolds number as follows:

which yields

U,
Rex:p c?
1

(V)
—
=)
~—

§(x) = 5.3242 2 Re; V/

Now, C(x) can be found using (7) and (9).

)
—~
—_
=
~—

Cj(z) = 0.9955 Re; Y/

Cy(x)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Boundary layer thickness and skin friction coefficient as a function of x.
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Problem 2.3

Problem Statement

Consider a flat plate in a fluid medium that is at rest, except for a line sink located on the surface
at x = L, as shown in the following sketch. Suppose the inviscid velocity field produced by the sink
is v, = —C(L/r), where r is the radial distance from the sink to any point in the flow. Determine
the momentum thickness distribution 6(x).

N

k |
L

Figure 3: Problem schematic.

Solution

Approach:
e Determine stream function.
e Use coordinate transformation to determine V(z,y).
e Two options:
(a) Use Pohlhausen’s assumed velocity profile and integrate to find 6(z).
(b) Use Thwaites-Walz Method to solve for §(z) directly.

The z- and y-components of velocity can be written in terms of the stream and potential functions

as follows:
_99_ 9
YT o T dy (11)
_9_ o
YTy T oz (12)
In polar coordinates,
_ 06 _10¢
T e T T 00
_10¢_ N
Y00 T or
So,
oy
20 = —CL
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Partially integrating,
o(r,0) = /—CL a8 + f(r)

Y(r,0) = —-CLO+ f(r)
Differentiating both sides with respect to r,

o _

= 1) = =0
So,
Y(r,0) =—-CL#o
The coordinate transformation from polar to cartesian is
r=+/x2+y?
0 = tan™* (Q)
x

Using this, the stream function is

Now, using (11) and (12),

L—z

= 13

R S Py (13)
-y

_ 14

IR )
The streamline that represents the flat plate (y = 0) yields U.:
Uew) = (15)
€Tr) =
‘ (L — =)

This inviscid solution is the input for the boundary layer solution. First, the Pohlhausen Method
will be applied. The assumed velocity profile is

go=ero(§)e(3) +a(5) +e(3) (16
where
a=20
b:2+%
A
c==3
d:—2+%
A
c=1-5
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The variable A is the Pohlhausen pressure gradient parameter which is given by

62 dU,
A= —
v dx
For this problem,
52
A= -
v(L — x)?
Thus,
a=0 (17a)
62
b= ——=5+2 17b
6v(L — x)? * (17D)
52
_ _ 1
¢ 2v(L — x)? (17¢)
52
d=——— -2 17d
2v(L — x)? (17d)
52
=1-— 1
‘ 6v(L — x)? (17e)
Now, turning to (2),
g 1 dU, o Uy  Cf
Y ) w2 2
d:1;+Uedx(9+6) U, 2 2)
Since the wall is solid, v,, = 0. Taking the derivative of (15) with respect to x yields
dUe 1
de (L —z)?
So,
1dU. 1
U, de L—=zx
Inserting (17) into (16),
Usy (263 + 3% — 2642 U, —6)3
o) = SV BTV ZB) | Veyly ) (18)

C6620(L — )2

The momentum thickness is given by (3) which is repeated here.
6
u\ u
0= 1——)—d 3
[ (=) o )

6 —56% — 486%v(L — x)?
45360 v2(L — x)4

Evaluating this equation yields

o(z) + 5328)
However, §(z) is still unknown. Equation (2) must be solved for §(z). Inserting all that is known
yields

2
—56°p?(2LU.gc — 2Uccx + 1) — 383 pp(L — 2)?(16U. (L — x) + 79) + 121320p%(L — z)* T’,j + ﬁ

22680u2U, (L — x)b Ue

6
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This equation is a quintic polynomial in § and as such does not have a closed form solution. Next,
the Thwaites-Walz Method will be used. Multiplying (2) by U.0/v yields

ruf _Uebdf | 6°dU/d

T & T (H +2) (19)

where H, named the shape factor, is a nondimensional function of the profile shape only. The term
on the left hand side is also a function of the profile shape alone and is called the shear correlation
function, denoted by S. Letting A = (6%/v)dU./dx, (19) becomes

d A
— || =2{S(A) —A(H(A) +2)} =F(A 20
i | =2 (5w - A @)+ 2) = P (20)
where F(A) comes from a curve fit from a large amount of experimental data available.

F(A) = 0.45 — 6.0A

Using this, (20) can be integrated which yields

0%(x)

6
_ 0.45v Ue(O)] (21)

* 5701 2
- Ueﬁ(w)/o Uelw)de +6%(0) {Ue«c)

For a sharp-nosed body, 6(0) = 0 because the boundary layer thickness is zero at = 0. However,
Ue(z) is already known from (15). Inserting all of this into (21) and evaluating yields

6(x) = 0.67082, /’”(Lp_‘r)

A plot of the momentum thickness is shown below.

Figure 4: Plot of momentum thickness over flat plate with sink at L.
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Problem 2.7

Problem Statement

Air at 1.0 atm and room temperature flows over a plate at a rate of 3.0 m/s. Determine the mass
flow (per unit width) of external stream fluid that enters the boundary layer between the leading
edge and a station 50 cm from the leading edge.

Solution

The mass flow of external stream fluid that enters the boundary layer between the leading edge
and a station 50 cm from the leading edge is equivalent to determining the mass flow rate at 50 cm.
The justification for the preceding statement is based on the fact that the boundary layer deflects
the streamlines upward by an amount equivalent to the displacement thickness, 6*, and 0* < 4.
Therefore, this problem is equivalent to

m=/06PU(y)dy

The problem is that u(y) is not known. This is where Pohlhausen’s method comes in. Pohlhausen’s
velocity profile will be used and d(x) will be found along the way. The velocity profile is given

by
O GREIGRRO) &

For this case, the Pohlhausen pressure gradient parameter is zero. That is,

2
A= idU@ =0 - U, = const
v dz
So, (22) becomes
4 3
Y2y 2y
u(y) = Ue ((34 T + 5) (23)
However, the boundary layer thickness, §(z) is unknown. Turning to the adapted momentum
equation,
db 1 dU, vy Oy
— + — 20+ 6%) — = = L 2
d:c+Uedm( +6%) U, 2 (2)
which becomes 0 C
f
= _ = 24
dx 2 (24)

where 6 is the momentum thickness which is given by (3).

é é 4 3 4 3
U\ u Y 2y 2y Y 2y 2y
0= 1—— | —dy= 1-=+=Z 2| -=+=Z)d
/o< Ue)Uey /0( 5 5)(54 55 )W
Evaluating the integral yields

37

0(z) = E&(m)
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Inserting this into (24) and remembering the definition for Cf,

3T 7w
315dz  pU2

and

_ Ou 2 4P 6y? _ 2uU,
Tw—”ay—“@[a*&wsyzo— 5

Now,
dd 630 p

%7§pUe

1260
5(z) = ,/?5; — 5.8356 2 Re, /2

Using this, the mass flow (per unit width) of external stream fluid in the boundary layer at station
T is

Using separation of variables,

m = 4.0849\/ pup U x = 4.0849 i1 Reiﬂ

For this problem,

Ue =3.0m/s
p = 1.225 kg/m?
p=1.789 x 10° N-s/m?

Thus

1 = 0.023421 kg/(s-m)

Problem 2.9

Problem Statement

What is C¢(x) in the vicinity of the stagnation point for air at standard temperature and pressure
(STP) flowing at 5.0 ft/s over a circular cylinder with a 1.0-in. diameter? Use the Thwaites-Walz
method.

Solution

Approach:
e Determine inviscid solution for flow over a cylinder using potential flow.

e Apply Thwaites-Walz method to determine CY.
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The potential flow solution for flow over a cylinder involves the superposition of a doublet and a
uniform stream. A doublet is actually a superposition of a source sink pair that are of strength m
and —m, respectively that are separated by a distance a as a — 0. The complex potential for flow
around a cylinder is

2
F(z) = ¢+ it = Vio <z+}i>

where z = & + iy or in polar coordinates, z = re??. The stream function is the imaginary part of
the complex potential. That is
P(r,0) = Im[F(2)]

Now, the velocity components can be determined by differentiating the complex potential.

F .
w(z) = el =u—iv = (u, —iug)e’

dz

Evaluating the derivative (in polar coordinates) yields the complex velocity

w(z) = <1 — fje—%9>

Using Euler’s formula and separating real and imaginary parts yields the velocity compoents:

R2
Uy = Vo cos 6 (1 — 7"2> (25)
2
ug = — Voo siné (1 + ]:2> (26)

We are interested in the velocity at the surface of the cylinder which can be determined by evaluating
(26) at r = R. Doing so yields
U, = —2Vsinf

However, 0 < 6 < m measured counter clockwise from the positive z-axis. We need the component
of velocity along the surface of the cylinder. A simple mapping can be used to accomplish this.
Let s

0=——-m

R

where s represents the distance along the surface of the cylinder from the stagnation point on the
left. Now, U, becomes

Ue(s) = 2V sin (%)

The derivative of U, wrt s is needed for the Thwaites-Walz method.

R
dUc\ 2V
ds ), R
This result answers a question asked in class about how we determine dU./ds. The momentum
thickness must now be determined,

If s =0,

_0.451/ $ 504/ ds! 9
= Ty J, VA4 + 60 [Ue<s>

10

07 (s)
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where 6; has been used to denote the momentum thickness because the symbol 6 has already been
used. For this problem, U (0) = 0 because of the stagnation point on the leading edge. Evaluating
the integral yields

_ 008385 5 (_Loss (2) 4 2cos? (2) - il 256R
et(s)_Vo?gsin(%) \/V (32RVOO<  cos (R)+3cos (R) cos (R))+ G Ve

Now, A(s) can be calculated.

Now, the shear correlation function needs to be determined. Using the fit to experimental data
given on page 46 of the book,

S(A) =0.22 4 1.57A — 1.80A?

Then, the desired result is

2p
Cr= S(A 27

1= oW (27)
All values in (27) are known. Evaluating (27) yields a rather large symbolic expression. The result
can be seen in the appendix. The skin friction coefficient is infinite at the stagnation point, as
shown in the below figure.

<" 1000

800}

600}

400

200

0 L L L L I L )
0.00 0.01 002 003 0.04 005 006 0.07 0.08 0.09

S

Figure 5: Plot of skin friction coefficient vs s.

11
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Problem 2.16

Problem Statement

For a plate heated over its entire length, how is the average value of the film coefficient up to a
station x related to the local value at that same station?

Solution

For this problem h(x) must be determined, and then h,ys will be computed by integration. The
ratio between the two film coefficients will then be compared. The assumed velocity profile is given
by

U, 26 2
And the assumed temperature profile is

T-T, 3y 1<y)3

T.—T, 20r 2\or

U 3y 1(y>3
0

where 07 is the thickness of the thermal boundary layer. Because this is a flat plate, dU./dxz = 0.
Thus, (2) simplifies to
dg 1 Tuw v Ou

0, =Y - = 28
dv 27 pU2 U2 0y (28)

y=0

The momentum thickness is determined in the same manner as before
1
uw\ u
0(x :/ (1—>dy
(z) ; o) T

39
0(x) = —96
() = o56(a)
Determining the velocity gradient in the y direction, inserting all of the previously mentioned

information into (28), and simplifying yields

Evaluating the integral yields

395 _ 3y
280 dx  2U.6

280 vz
@)=\ Eo

The relationship between the thermal and velocity boundary layers is given by

3/4 1/3
ézzgggigg,l_(ﬂg/
§  1.026Prl/3 T

In this case, the entire plate is heated so xg = 0 and the above equation becomes

Solving this ODE yields

o 1

§  1.026Pr'/3

12
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where the Prandtl number is given by

Therefore,

—k oT
h(x) B Tw - Te <ay>y0

The temperature gradient can be determined directly from the temperature profile.

<8T> B 0.331613(T. — Toy) ¢/ 52
oy =0 /(VT:S

0.331613k {/ <2

(x) =
h(z) \/%

The average film coefficient over some length of the plate, denoted by /¢, is given by

Now,

1 l
have = 6/0 h(zx) dx

Now,
h(z) 1 /¢

have 2V

This equation is plotted in Figure 6. This figure shows that hayge is reasonably close to the actual
value over a lot of the plate, except for the beginning. If the length used to compute the average
film coefficient is equal to x, then the relation becomes

13
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Figure 6: Comparison between local and average (taken over length ¢) film coefficients vs x.

Problem 2.18

Problem Statement

Hydrogen at 500°C and 15 atm flows over a plate at 2 m/s. The first 2 cm of the plate are
maintained at that same temperature, the next 3 cm are at 600°C, and the rest of the plate is at
650°C. What is the heat transfer rate 6 cm from the leading edge?

Solution

The integral energy equation is

(Z[/OH(Te—T)udy}%—;/OH (?;>2dy—vw(Te—Tw)=W (29)

Because this equation is linear in 7', the principle of superposition can be applied. That is, given
two or more solutions to a linear differential equation, their sum is also a solution. Therefore, the
total heat flow at a location z is equal to the sum of the individual solutions.

Qo = Z h(w, &) (ATwi)

The film coefficient is given by (2.58) from the text.

-1/3
T\ H

14
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Performing the sum yields

ks/PI‘ 0.332ATy + 0.332AT5 pUex
o)™ o)

xT

w =

Using the tables at the back of the book to determine the properties of hydrogen yields

¢w(6 cm) = 1.5643 W /m?

CAS Notebooks

15



Chapter 2 Problem 1

inf103l= ClearAll["Global "]
no4= ufy_] := Ue*Tanh[2.65*xy / 6]

inf10s5)= Integrate[ (1 - u[y] /Ue) »uly] /Ue, {y, 0, 6}]

J 2.65y 2.65y
Out[105]= J 1- Tanh[i} Tanh[i] dy
0 e} 1)

nfioel= intl = Integrate[Tanh[a*y /6], Y]

6Log[Cosh[a?yH

Out[106]=
a

n107= int2 = Integrate[Tanh[a*y/ 6]A2, y]
6 Tanh [ a—y]
R

ou[107]= y —
a

ntogl= @ = intl /. y-»>6 - intl /. y->0 + int2 /.y ->6 - int2 /.y >0 // FullSimplify
6 Log[Cosh[a-Log[Cosh[a-Tanh[a]]]]]

out[108]=
a

nflo9)= @ = /. a—-»2.65

out[109]= 0.373936 &

ni10)= dudy = D[u[y], y] // FullSimplify

2
2.65 Ue Sech[z'e}%}

out10}=
e}
nit]= tw = u*dudy /.y > 0
2.65Ueu
Out[1t1]s ——
o)

nt12l= CE = tw/ (1 /2 % p »UeA2)
5.3 u

Out[112]=
Ue b p

n[113;= RHS = CE /O % 6N 2
14.1735u

Out[113]=
Ue p

nf114]= 6[x_] :=8qrt[2.0 » RHS * x]

Printed by Wolfram Mathematica Student Edition
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nf15= CEsymb = 5.3 % u/ (Sqrt[2.0 * RHS * X] * p*Ue) // FullSimplify

0.995455 [=2£
Ue p

Out[115]=
X

inf116:= SQrt[2.0 * RHS * x]

oufft16l= 5.3242
Ue p

ni117- Plot[8[x] /. u»1/.Ue-1/.p-1, {x, 0, 1}, PlotStyle » {Thick, Blue}]

Out[117]=

Printed by Wolfram Mathematica Student Edition
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inf42j= ClearAll["Global *"]

Finding u and v using the transformation matrix

n4s= B = {{Cos[@], Sin[O]}, {-8in[6], Cos[O]}}
ou4s= {{Cos[6], Sin[6]}, {-Sin[6], Cos[6]}}

n44= Binv = Inverse[B] // FullSimplify
ouf44i- {{Cos[6], -8in[6O]}, {Sin[6], Cos[O]}}
n4si- Vpolar = {-1/r, 0};

in46l= Vecartesian = pBinv.Vpolar /. 6 » ArcTan[y, x] /. r-» Sqrt[xA2+yA2] // FullSimplify

vy b4
Out[46]= {— , - }
x2 4 y2 %2 4 y?

Finding u and v by solving for the stream
function and using x=r*cos(theta) ...

n47:= v = -D[-ArcTan[y/ (x-L)], x] // FullSimplify
A%
ou47}- - ————
(L-x)?+y?

n4sl= u = D[-ArcTan[y/ (x-L)], y] // FullSimplify
L -x
Out[48]=
(L -x) 24 y2
n49)- Ue[x_]1 t=u/.y->0

In50):= Ue [xx]

1

Out[50]=
L-x

5= dUedx = D[Ue[x], x]

Out[51]=
(L-x)?

Printed by Wolfram Mathematica Student Edition
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2= 1 / Ue[x] » dUedx
1

Out[52]=
L-x

Applying Pohlhausen’s method

ns3= A = 8A2 /v« dUedx

52
Out[53]=
(L-x)%v
ns4= a = 03
nGs= b = 2 + A/6 // FullSimplify
52
ou[ssl= 2 + —————————————
6 (L-x)?vVv

nsel= @ = =A/ 2
62

out[sels — —————————
2 (L-x)%v

ns57= d=-2+A/2 // FullSimplify

62
outfs7l= — 2 + ——————————
2 (L-x)2%v
nse- e=1 - A/ 6
52

ous8]= 1 - ———
6 (L-x)?vVv

nes= uu =Ue[x] * (@ + bxy/S+cx (y/S6)A2 + A% (y/S)A3 + ex (y/ S6)A4) // FullSimplify

3
Y(6 (L-x)2 (v’ -2v?56+26%) +62(7iﬂ

out[83]=
6 (L-x)° 8
nss= 6 = Integrate[ (1 -uu/Ue[x]) *uu/Ue[x], {y, 0, 6}] // FullSimplify

520 (-48 (L-x)? u-56%p)
(L-x) 4 u?

o (5328 +

e 45360

ingel= D[O, x] // FullSimplify
5 p (-24 (L-x)?u-56%p)

Out[86]=
11340 (L-x)°pu?

Printed by Wolfram Mathematica Student Edition
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ne7= s = Integrate[(1-uu/Ue[x]), {y, 0, 6}] // FullSimplify

1 5% p
oufg7l= —— &6 [36 - ——————
120 (L-x)2pu
nggl= tWw = u*D[uu, y] /.y >0 // FullSimplify
2 u S5 p
+
L6-x6 6 (L-x)3

out[8s]=

4= CE = tw/ (1 /2% p*Ue[x]A2) // FullSimplify

1] 4 (L-x) u
Out[94]= +
3L-3x ép

neol= v=u/p;
nezl= LHS = D[6, x] +1/Ue[x] *dUedx * (2 *6 +6s) // FullSimplify
4044 (L-x%)*6pu?-95 (L-x)28up-505°p?

Out[92]=
7560 (L -x)° 2

nos= RHS = 1 /2% Cf // FullSimplify
5 2 (L-%) U

out[95]= +
6L-6X%X 6p

in9e]:= soln = Solve[ LHS == RHS , §]

A very large output was generated. Here is a sample of it:

55 19 L2 i 38Lx U 19 x% u + 10157 x 2=<> 14 2 p <«<1>> <<1>> 40628 x 213 L x3 % p
3p 3p 3p 3 («<1>)13 3 «<1>» <<l 1> 3 (<<l +<<9>>+<<l>)1/3

; + ;
3 (<«<1>>)1/3 15 x 213 p3

Oout[96]= 3
-23822350 L8 13 pf 9 \/ﬁ  —
10157 x 21/3 x4 1120 K P74+ <<I>+ <<1>7+<<1> } <<4>> {6 R <<1>> }}
’ ’

Show Less || Show More || Show Full Output || Set Size Limit...

ne9= (* FullSimplify[soln, {u €Reals,LeReals,x€Reals,UecReals,€Reals, peReals}] *)

Thwaites-Walz Method

Ine71= Ue[x]
1

out[97]=
L-x

Printed by Wolfram Mathematica Student Edition

| 3
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infogl= @ = SQqrt[0.45 *v / Ue[X] A6 * Integrate[Ue[xp] A5, {xXp, 0, x}]] // FullSimplify

(L-x%x) x U
ouf108l= 0.67082 —
Jo)
ni11- Plot[6/.v->1/.L->L0/.p>1, {x,0, 6}]

out[111]=

Plotting

n71]= LO = 53

In72)= Plot[Ue[x] /. L > LO, {x, 0, LO-0.1},
PlotLabel » "Variation of U, as a function of x"]

Variation of U, as a function of x

20
out[72]=

05+

Printed by Wolfram Mathematica Student Edition
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n77- streamline = Solve[y[x, y] =¥0[[1]], v]:
sl[x ] :=y /. streamline[[1]];
mph = Plot[sl[x], {x, -3, 3}, PlotStyle » {Thick, Red}];
Print[mph];

0.5

-0.5

Printed by Wolfram Mathematica Student Edition
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In [1]: from sympy import *
In [2]: import numpy as np
In [3]: init_printing()

In [4]: %, y, r, theta = symbols("x y r theta", real=True)

In [5]: V = Symbol("V", real=True, positive=True)

In [6]: R

Symbol("R", real=True, positive=True)

In [7]: z = Symbol("z")

In [8]: z_cart = x + Ixy

In [9]: z_pol = r*exp(I*theta)

Complex Potential
In [10]: phi = Vx(z + R**2/z)
In [11]: diff(phi, z)

Out[11]:

In [12]: diff(phi, z).subs(z, z_pol)

OQut[12]:

R? ;
V (_7/,26—219 + 1)

In [13]: w = (diff(phi, z)*exp(Ixtheta)).subs(z, z_pol).subs(exp(I*theta), cos(theta) + I*sin(theta))
In [14]: u_r = re(w).simplify()

In [15]: u_r

Out[15] :

v (=R*+17) cos (0)

r2

In [16]: u_theta = -im(w).simplify()



In [17]: u_theta

Out [17]:

—3 (R? + 1) sin (0)
In [18]: u_theta.subs(r, R)
Out [18]:
—2V sin (0)
In [19]: dUedsTheta = 1/Rxdiff (u_theta.subs(r, R), theta)

In [20]: dUedsTheta

Out [20] :

—~?§7cos(9)

In [21]: s = Symbol("s", real=True, positive=True)

In [22]: Ue = Function("Ue") (s)

In [23]: Ue = u_theta.subs(r, R).subs(theta, s/R-pi)
In [24]: Ue

Out [24] :

s
2V’sh1(47)
R
In [25]: plot(Ue.subs(V, 1).subs(R, 1), (s, 0, pi))
Out [25] : <sympy.plotting.plot.Plot at 0x7f053f069630>
In [26]: dUeds = dUedsTheta.subs(theta, s/R-pi)
In [27]: dUeds
Out [27] :
2V (3)
—cos | =
R R
In [28]: plot(dUeds.subs(V, 1).subs(R,1), (s, 0, pi*1.0))

Out [28]: <sympy.plotting.plot.Plot at 0x7f05381fc2e8>

In [29]: nu = Symbol("nu", real=True)
In [30]: sp = Symbol("sp", real=True)
In [31]: integrate((Uex**5).subs(s, sp), (sp, 0, s))

Out [31]:

32RVS (—;) cos® (%) + §COS3 (%) — cos (;)) + ?‘ﬁ



In [32]: theta_t = sqrt(0.45+nu/Ue**6*integrate((Uex*5) .subs(s, sp), (sp, 0, s)))
In [33]: theta_t

Out [33] :

0. 0838525491562421 |sm ()] 2 E s 256 R
T \/ 32RV5 —x cos5 <R) + 3 cos3 <E) — cos (R)> + =T V5>

In [34]: Lambda = theta_t**2/nu*dUeds
In [35]: Lambda

Out [35] :

0.0140625 cos (%) 5 1 o/ 2 48 5 256R _ 5
RVFsin? () (32RV <_5 cos? () + 5 005 () —cos (R>)+ 15 V)

In [36]: L, rho = symbols("L rho", real=True)

In [37]: def S(L):
return 0.22 + 1.57xL - 1.8%Lxx*2

In [38]: Cf = 2*nu/(Uextheta_t)*S(Lambda)
In [39]: Cf.simplify()

Out [39] :

1.49071198499986+/30v s 6 5
—0.00162 (cos (=) —1) (—3sin® (=) + 9cos |
VEVV v (cos (3) —1)* (3sin? (3) — 9cos (3) — 11) sin® (3) |sin(;)|( (oo () =) (%)

In [40]: Cf.subs(nu, 1.335).subs(R, 1/24).expand().subs(V, 5).simplify()

Out [40] :

1

Wlw

(— (cos (24.0s) — 1) (15.4513888888889 cos (24.0s) + 2.57523148148148 cos (48.0s) + 16.309799382716)) sin® (24.0s) |sin (24

In [41]: plot(Cf.subs(nu, 1.335).subs(R, 1/24.).subs(V, 5.), (s, 0, 0.08), ylim=(0, 1000), ylabel="$C_f

In [41]:



Chapter 2 Problem 16

inftsl= ClearAll["Global *"]
o= ufy_] := Uex (3/2%xy/6-1/2% (y/S8)A3)

n20p= @ = Integrate[ (1 - ul[y] /Ue) *ul[y] /Ue, {y, 0, 6}]
396
out20}= ——
280
n21= RHS = v* (D[ul[y], ¥] /. y > 0) /UeA2
3v

out[21]=
2Ued

22~ solns = DSolve[{39/280%&'[x] =3v/ (2+«Ue*8[x]), §[0] =0}, 6[x], x]

2 |2~y 2 [ kv
\/g }'{6[X]% \/[; }}

3= 6[x_] := Sqrt[280 /13 x v x x / Ue]

out[22]= {{6[}(} - -

4= Pr = uxcp/k
U Cp

k

out[24]=

nesi- 8T[x_] := 1/ (1.026 * PrA (1/3)) % 6[x]
neol- T[X_, vy ] := (3/2%y/&8T[x] -1/2% (y/S8T[x])A3) (Te-Tw) +Tw

nE1= T[x, y] // Simplify

1 pep \1/3
oust- Tw - ——————0.00540244 (Te-1.Tw) [1.Uey’uc,-61.382kxyvV
k Ue (ﬂ)m k
Ue

nEs= qw = -k *D[T[x, y],y] /.y—>0// FullSimplify

0.331613k (Te-1.Tw) (==

1/3
o)

Out[33]= —
XV

\ ve

4= D[T[x, ¥],¥] /. y—>0// FullSimplify

0.331613 (Te-1. Tw) <%)”3
Out[43]=
ﬂ
Ue

ns4= hix_ ] :=-k/ (Tw-Te) *D[T[x, y], Y] /. y~>0

Printed by Wolfram Mathematica Student Edition
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nzel= h[x] // FullSimplify

0.331613k (=)'
Out[36]=
XV
Ue

ns9= havg = 1/ (L) * Integrate[h[xp], {xp, 0, L}] // FullSimplify

0.663226 k (==

1/3
)

out[39]=

Lv
’\ Ue
ni4si= Sqrt[ (h[x] /havg) A2 // FullSimplify]

L
out4s)= 0.5 -

\

Printed by Wolfram Mathematica Student Edition



Chapter 2 Problem 18

inf114:= ClearAll["Global "]
5= hix_, € ] :=0.332%*PrA(1/3) xk/x*x (p*Uexx/u)N(1/2) % (1L - (§/x)N(3/4))N(-1/3)

ni1el= xi = {2%*10A (-2), 5%10A(-2)}

1 1
Out[116]= {—, —}
50 20

in117:= DT = {100.0, 50.0}
ouf117= {100., 50.}

niig- qw = Sum[h[x, §[i]] *AT[i], {i, 1, 2}] // Simplify

k pri/3 Uexp 0.332 AT[1] 0.332 AT[2]
H 1o (&AL 3/4)\1/3 (&2 3/4\1/3
Out[118]= ( ( * ) ) ( ( x ) )
X

nfi9k= Pr = uxcp/p
cp U

Out[119]=
0

nf20= qw = Sum[h[x, xi[[i]]] *DT[[i]], {i, 1, 2}] // Simplify

45.0593 N 122.31 (M)lﬁ Yexp
(207\/2—51/4 (i)z/‘l)l” (50721/4\/5—(}1(_)3/4)1/3 o —Li
Out[120]=
X

nf21= k = 629 * 10A (-6) *4.184 /100;

nf22)= R = 4.12% 10A3;
nf23l= p = 15%*101.325%10A3;
Inft24]= Ue = 2;

inf2s- y = 1.405;

nizel- ¢p = y*R/ (y-1);

nf27= u = 126 * 10N (-6) /10.;

nizgl= p=p/ (R* (500 +273));

nf29)= qw /. x - 6 /100
ouff129)= 1.56426

Printed by Wolfram Mathematica Student Edition
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ns3:= Plot[qw, {x, 0, 0.1}]

2.4
22

20

Out[133]=

0.02 0.04 0.06 0.08 0.10

Printed by Wolfram Mathematica Student Edition
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Code listing

Listing 1: Problem 2.1 code

#!/usr/bin/env python

import os

import sys

import numpy as np

import matplotlib.pyplot as plt
from matplotlib import rc

s

# Setting defaults
#:

"

# Setting some defaults

rc("font", **{"family": "serif", "serif": ["Computer Modern"]})
rc("font", size=13.0)

rc("text", usetex=True)

lwidth = 1.5

4

# Inputs

delta = 1.0

y = np.linspace(0.0, delta, 1000)
Ue = 10.0

u = Ue*np.tanh(2.65*y/delta)

rho = 1.0

mu = 1.0

s

# Plotting

#:

"

# Plotting velocity profile

figl = plt.figure(figsize=(3.5,4.5))

plt.plot(u, y, "-k", linewidth=1lwidth)
plt.ylabel(r"$y/\deltas$")

plt.xlabel(r"$u(y)/U_e$")

plt.xlim([0.0, np.amax(u)+0.1*Ue])
#plt.gca().xaxis.set ticks([0.0, Ue/2.0, Ue])
plt.gca().xaxis.set ticks([0.0, Uel)

#plt.gca().set xticklabels(["0", "$U e/2%", "$U e$"])
plt.gca().set xticklabels(["0", "$U e$"])
#plt.gca().yaxis.set ticks([0.0, delta/2.0, delta])
plt.gca().yaxis.set ticks([0.0, deltal)
#plt.gca().set yticklabels(["0", "$\delta/2$", "$\deltas"])
plt.gca().set yticklabels(["0", "$\delta$"])
plt.tight layout()

# Defining delta(x) and Cf(x)

x = np.linspace(0.0001, 1.0, 1000)
Re x = rho*Ue*x/mu

delta = 5.3242*x*Re_x**(-1.0/2.0)
Cf = 0.9955*Re_x**(-1.0/2.0)
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# Plotting delta(x) and Cf(x)

fig2 = plt.figure(figsize=(8, 5))

ax2 = plt.subplot(2, 1, 2)

plt.plot(x, Cf, "-k", linewidth=1lwidth)
plt.xlabel(r"$x$")

plt.ylabel(r"$C f(x)$")

plt.ylim([0.0, 5.01)

plt.gca().set yticklabels([])
plt.subplot(2, 1, 1, sharex=ax2)
plt.plot(x, delta, "-k", linewidth=lwidth)
plt.ylabel(r"$\delta(x)$")

plt.gca().set yticklabels([])
plt.setp(plt.gca().get xticklabels(), visible=False)
plt.tight layout()

# Making sure images directory exists
if not os.path.isdir("../Images"):
os.mkdir("../Images")

# Saving figure
figl.savefig("../Images/Ch2Probla.pdf")
fig2.savefig("../Images/Ch2Problb.pdf")

# Showing figure
plt.show()

Listing 2: Problem 2.3 code

#!/usr/bin/env python

import os

import sys

import numpy as np

import matplotlib.pyplot as plt
from matplotlib import rc

s

# Setting defaults

# Setting some defaults

rc("font", **{"family": "serif", "serif": ["Computer Modern"]})

rc("font", size=13.0)
rc("text", usetex=True)
lwidth = 1.5

Inputs

H B H

L=5.0 # L

X np.linspace(0.0, L, 1000) # L
# L
#

Ue = 1.0/(L-x) /T
rho = 1.0 M/L"3
mu=1.0 # M/ (L*T)

s

# Plotting
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##
*

# Plotting momentum thickness
theta = 0.67082*np.sqrt((L-x)*x*mu/rho)
figl = plt.figure(figsize=(7, 3.4))

plt.
x1im([-0.2,L+0.2])

.gca().xaxis.set ticks([0.0, L])
.gca().set xticklabels(["0", "$L$"]1)
.gca().set_yticklabels([])
.xlabel(r"$x$")
.ylabel(r"$\theta(x)$")

.tight layout()

plt
plt
plt
plt
plt
plt
plt

plot(x, theta, "-k", linewidth=1lwidth)

# Making sure images directory exists
if not os.path.isdir("../Images"):

os.mkdir("../Images")

# Saving figure
figl.savefig("../Images/Ch2Prob3.pdf")

# Showing figure

plt.

show()
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