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1 Problem Statement

A piston moves from rest towards the right with constant acceleration 4 in a quiescent gas having
initially uniform temperature and pressure. As the gas is compressed, the right running charac-
teristics converge (see Figure 7.18 of the textbook). Assuming inviscid dynamics, a shock forms
at the earliest intersection of characteristics of the same family (Ct in this case). Your task is to
determine the location of the shock formation as a function of the isentropic index.

Include in a typed report:

e The governing equations.

e A suitable dimensionless form of the same equations.

The solution procedure.
The non-dimensional shock formation location T and time ¢ as a function of v only.

A graph (not a sketch) of the dimensionless velocity field in a neighborhood of the shock

location for v = 7/5.



e Assuming that the gas is air in standard conditions 7' = 298 K and p = 1 atm, the numerical
value of the acceleration % such that a shock forms within 1 meter of the initial resting location
of the piston.

2 Solution

2.1 Governing Equations
2.1.1 Fundamental Governing Equations

Assumptions:
1. Isentropic flow
2. Inviscid dynamics
3. Quasi-one dimensional flow

The continuity equation, Eq. (6.22) from Anderson, is
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Remembering from thermodynamics that any state variable can be expressed as a function of two

other state variables,
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Remembering the first assumption of isentropic flow, (1) can be written in terms of the material
derivative as
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For one-dimensional flow, (2) becomes
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Considering the momentum equation, Eq. (6.29) in Anderson,
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Applying (6.22) to a one-dimensional flow,
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Adding and subtracting (3) and (4) yields
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Solution of the equations in (5) yields w(z,t) and p(x,t). These equations are solved using the
method of characteristics as outlined in Chapter 7 of Anderson’s book.

2.1.2 Method of Characteristics

As the piston accelerates, Ct characteristics propagate from the piston face. The slopes of these
C* characteristic lines are given by
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The Riemann invariants are
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The position of the piston face as a function of the acceleration (@) and time (t) is given by

1.
Tp =5t ty’ (8)
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Using the fact that J~ is constant everywhere and the fact that us, = 0,

The velocity is given by
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Also, solving (9) for ¢, u
- ()
Inserting (11) into (8), 9
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Now, using the fact that the Ct characteristics are straight lines, (6) becomes
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Inserting (10), (11) and (12) into (13) and rearranging,
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Now, the dimensionless parameters will be determined, and then (14) will be nondimensionalized.

2.2 Dimensionless form of Governing Equations
2.2.1 Buckingham Pi Analysis

The parameters we are concerned with are z, u, %, as, and t. Looking at the dimensions of the

variables:
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The number of fundamental dimensions is two (i.e., j = 2). Therefore, using the Buckingham Pi
Theorem,
k=n—j=5-2=3

where k is the number of dimensionless groups we can expect from the analysis and n is the total
number of variables. So, we should expect three dimensionless groups. Choosing the repeating
variables to be as and %, the first I group is

I = (a0o)®(w)z = (LTH)Y(LT2)*(L) = MOLOT?

Length: a+b+1=0 [1 1][61}:[_1]

Time: —a—2b=0 -1 -2 1|b 0
Solution of the linear system of equations yields a = —2 and b = 1. Therefore, the first dimensionless
group is given by
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This II group represents the dimensionless position denoted by =.

Similarly,
Il = (as)(w)t = (LT~ H)*(LT~2)%(T) = MOLOT®
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2.2.2 Nondimensionalizing the Governing Equations

Expanding (14),
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Multiplying both sides by 1,
v yuipt

. . 1.
UpT = GooUpt + §uupt — Qoo — §u2 + 2

Dividing both sides by ago,
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Each term in (18) is dimensionless. Using the parameters defined in Egs. (15) - (17), E

becomes

Rearranging,

Eq. (19) will be solved using the quadratic equation next.
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(19)




2.3 Procedure
Outline:
1. Determine governing equations.
2. Use Method of Characteristics to change the form of the governing partial differential equa-
tions to ordinary differential equations.
3. Determine kinematic relationships.
4. Algebraically manipulate expressions.
5. Determine dimensionless parameters.
6. Nondimensionalize the resulting expression from step 4 by further algebraic manipulation.
7. Solve for the mass motion u(Z,t) using the quadratic formula.
8. Plot the gradients of u(z, ) on a surface plot of the function (see Figure 1).
9. Solve for the T and ¢ coordinates of the area where the gradients become very large.
10. Create animation of change in velocity profile with time.

Solving (19) yields two solutions:
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Evaluating both solutions at (0, 0), it is evident that the first solution is valid because u(0, 0) must
be zero. Therefore,
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Shock Formation Location

The shock forms where the gradients of pressure, density, and velocity become very large. Figure 1
shows a plot of (T, t) with the colormap set as V. The green dashed line is the first characteristic.
The solid green line is the path of the piston. Behind the solid green line (i.e., in the space behind
the piston), the function given in Eq. (20) is no longer valid. We are concerned with the region



between the green lines. As T and ¢ increase, more characteristics propagate from the face of the
piston.

Solving (20) for 7,
The shock forms where 0u/0T — oo. Equivalently, the shock forms where 0Z/0u — 0. Finding

the partial of T with respect to w,
0T y+1) -
e A N
ou < 2 > T

Assuming that the shock forms at the first intersection of the initial characteristic and another
characteristic that propagated from the moving piston face, zero induced mass motion along the
initial characteristic is imposed by setting @ = 0. Therefore,
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tshock = —— =~ 0.83 21
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The equation of the first characteristic in dimensionless form is Z = ¢. Therefore the Z-coordinate
of the shock is given by

2

The results in (21) and (22) agree well with Figure 1.




2.5 Dimensionless Velocity Field

X

Figure 1. Eq. (20) with colormap as gradient of u(z, t).
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Figure 2. Dimensionless velocity distribution at ¢ = tshock-

Out of curiosity, a quick animation of the variation of the velocity profile with time was created
using MATLAB. The video can be seen by typing the following link into your browser (the tilde is
causing problems with the link):

http://omega.uta.edu/”jrg2179/GD_Proj_2.html



2.6 Bonus

Egs. (15) and (22) will be used to determine the value of the acceleration needed to create a shock
within 1 meter of the initial resting location of the piston. Remembering the definition of the speed

of sound,

ago =vyRT
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A MATLAB code

Filename: Project_2.m
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clear,clc,close all

% Setting defaults

set (0, 'defaulttextinterpreter', 'LaTeX")
set (0, 'defaultaxesfontname', '"Helvetica')
set (0, 'DefaultAxesFontSize',12)

o)

% Setting up path for saving images

ImgPath = ['C:\Users\James\Desktop\School\Courses\"', ...

'UTA\AE 5342 - Gas Dynamics\Images\'];

)

% Plot decision
plotdec = 1;

% Isentropic index
g = 7/5;

syms a a_inf u x t x_p ud_p t_p gamma

% From J-
a = (gamma-1)/2+u + a_inf;

o\

From kinematics
_p = u/ud_pj;
_p = 1/2xu."2/ud_p;

Xt

% Substituting and manipulating

xl = expand((u + a).*x(t - t_p) + x_p);
disp('x = ")

pretty (xl)

x1 = subs(xl,a_inf,1);

x1 subs (x1l,ud_p,1);

fprintf ("\n\n")

disp('Dimensionless form:')
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55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
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72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111
112

fprintf ('\n\n")
disp('x(u,t,gamma) = ")
pretty(xl)

% Setting up quadratic
myexp = x1 - x;
fprintf ('\n")
disp('Manipulating:")
pretty (-myexp)

disp(' = 0")

% latex (—myexp)

fprintf ('\n'")

disp(' —————————————————————————————————————————————————————————————————— ")
disp('Solution to quadratic equation:')

diSp(' —————————————————————————————————————————————————————————————————— ")
fprintf ("\n\n")

disp('u(x,t,gamma) = ")

u = solve (myexp == 0,u);

pretty (u)

)

% Separating solutions

ul (x,t) = u(l);

u2(x,t) = u(2);

clear u

syms u

fprintf ("\n\n")

diSp(' 777777777777777777777777777777777777777777777777777777777777777777 ")
disp('Solving for x(u,t,gamma):"')

diSp(' —————————————————————————————————————————————————————————————————— ")
fprintf ('\n")

disp('x(u,t,gamma) = ")

xexp = solve(ul == u,x);

pretty (xexp)

fprintf ("\n\n")

fprintf ('\n")

% Finding the partial derivative of x WRT u
disp('x_u = ")

pretty (diff (xexp,u))

t_shock = solve(diff (xexp,u)==0,t);

Because the induced mass motion along the first characteristic must be

zZero
t_shock = subs (t_shock,u,0);
disp('t_shock = ")

pretty (t_shock)

fprintf ('\n")

x_shock = subs (t_shock,gamma,qg);
t_shock = subs (t_shock,gamma, g) ;

fprintf ('\n'")

disp('Bonus:")
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113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

134
135
136
137

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

157
158
159
160
161
162
163
164

166
167
168
169
170
171

x_s = 1; % m
R = 287; % J/ (kg*K)
T = 298; % K

udot = g*R*T/x_s*(2/(g + 1));
fprintf (['\nFor the shock to form within 1 m of the initial',...
' resting \nlocation of the piston, udot = %5.0f m/s"2.\n\n'],udot)

% Plotting
if plotdec == 1

figure

set (gcf, 'Renderer', 'zbuffer')
view (45, 30)

hold on

o

% Setting up

Nelements = 80;

gamma = 7/5;

tvec = linspace (0,t_shock,Nelements);
xvec = linspace (0,x_shock,Nelements);
[x,t] = meshgrid(xvec,tvec);

u =t + 2+sqgrt(gamma”2xt."2./4 + gamma*t." 2./2 + gammaxt
- 2xgammax*x + t."2/4 - t + 1) + gamma*t - 2;

% Path of piston

t_p = tvec;

X 1/2xt_p."2;

up = t_p + 2+sgrt(gamma”2xt_p."2./4 + gammaxt_p." 2./2 + gammaxt_p
- 2xgammax*x_p + t_p."2/4 - t_p + 1) + gammaxt_p - 2;

|
el
I

% First characteristic
t_1 = tvec;

x_1 = xvec;

u_1l = zeros(l,numel (x_1));

% Enforcing zero mass motion in the uniform region
u(u<0) = 0;

grid

surf (x,t,u,gradient (u), 'EdgeColor', 'none')
shading interp

colormap (jet)

set (gca, 'GridLineStyle', '—=")

xlabel ('S\overline{x}$")
ylabel ('$S\overline{t}s$")
zlabel ('$\overline{u}_1 \, (\,\overline{x},\overline{t})s$")

h_p = plot3(x_p,t_p,u_p,'-g', 'LineWidth',1.5);
h_ 1 = plot3(x_1,t_1,u_1l,'--g', 'LineWidth',1.5);

o

% Saving plot
set (gcf, 'PaperPositionMode’', "auto"')
print (gcf, '-depsc', [ImgPath, 'Proj2_surf_ 1l.eps'])
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172
173 % Animation

174

175 t = tvec;

176 X = xvec;

177 figure

178 set (gca, 'XLim', [0 17)

179

180 % Setting x and y locations for t display

181 xloc = 0.65;

182 yloc = 2.5;

183

184 for n = l:numel (tvec)

185 u = t(n) + 2+sqgrt(gamma”2xt (n) "2./4 + gammaxt (n) "2./2 + gammaxt (n)
186 - 2xgamma*x + t(n)~2/4 - t(n) + 1) + gammax*t(n) - 2;
187 u (u<0)=0;

188 if n ==1

189 h = plot(x,u,'-b', '"Linewidth',1.5);

190 xlabel ('$\overline{x}$")

191 ylabel ('$\overline{u}$")

192 set (gca, 'YLim', [0 3.51)

193 th = text (xloc,yloc, ['S\overline{t} = $',num2str(t(n))], ...
194 'FontSize',14);

195 Film(n) = getframe (gcf); S$#ok<xSAGROW>

196 else

197 set (h, 'YDataSource', 'u')

198 refreshdata

199 pause (.01)

200 set (th, 'String', ['S\overline{t} = $',num2str(t(n))])
201 Film(n) = getframe (gcf);

202 end

203 end

204

205 % Saving movie

206 moviezavi (Film, [ImgPath, '"Project_2.avi'], 'Compression', 'Cinepak’', ...
207 'Quality',100)

208

209 % Saving plot

210 set (gcf, 'PaperPositionMode’', 'auto")

211 print (gcf, '-depsc', [ImgPath, 'Proj2_ux.eps'l])

212

213 end
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