
AE 5301 – Finite Element Methods in Fluid Mechanics
and Heat Transfer

Final Project Report

James Grisham

May 2015

1 Introduction

The purpose of this project was to develop a general three-dimensional elliptic solver using
the Galerkin finite element method. The final code is templated, object-oriented C++ and
is compatable with all element types (i.e., tetrahedra, prisms, pyramids, and hexahedra). It
is also able to handle non-uniform source terms and variable coefficients (e.g., orthotropic
conductivity). The Armadillo C++ library was used for sparse matrix capabilities and the
linear system solver. It is verified to be second-order accurate using trilinear elements.
The code is templated so that it can be used to compute the sensitivity of the solution to
design variables using the semi-analytic complex variable method. The code reads AFLR3
formatted grid files and writes ASCII Tecplot output.

In the next sections, the formulation is explained, the code is validated using an exact
solution, and two set of results are presented. The first set of results involves simulation of
steady-state heat transfer for a ball grid array (a surface mounted chip carrier). The entire
geometry has 9 different materials, each with different material properties. The second set
of results is for the inviscid, irrotational flow of an incompressible fluid around a sphere.

The code was documented using Doxygen.

2 Formulation

An example of the type of elliptic equation being solved is

−∇ · (k∇T ) = Q (1)

where k = k(x, y, z), Q = Q(x, y, z). Defining the residual as

R = −∇ · (k∇T )−Q (2)

Multiplying the residual by a weight function and integrating over a hexahedral element
yields ∫

w(−∇ · (k∇T )−Q)dΩ = π (3)

1



where π is a functional. This is the unsymmetric weak form. Integration by parts will be
applied so that only first-order derivatives are left. In tensor notation, the equation is

−
∫

Ω
w(kT,i),i dΩ−

∫
Ω
wQdΩ = π (4)

The integration by parts in n-dimensions is∫
Ω
uv,i dΩ =

∮
Γ
uvni dΓ−

∫
Ω
vu,i dΩ (5)

Letting u = w and v = kT,i, the first integral can be written as∫
Ω
w(kT,i),i dΩ =

∮
kwT,ini dΓ−

∫
Ω
kw,iT,i dΩ (6)

Written in vector notation, the result is

−
∫

Ω
w(∇ · (k∇T )) dΩ = −

∮
Γ
kw(∇T · n̂) dΓ +

∫
Ω
k(∇w · ∇T ) dΩ (7)

Now, the weak form becomes

−
∮

Γ
kw(∇T · n̂) dΓ +

∫
Ω
k(∇w · ∇T ) dΩ−

∫
Ω
wQdΩ = π (8)

The weight function can be written as

w(x, y, z) =
∑

VjNj (9)

where the Nj term represents the shape functions and Vj represents a vector of unknown
coefficients. In the Galerkin method, the same basis that is used to form the shape functions
for the weight function is also used to form the approximation function,

T̃ (x, y, z) =
∑

ciNi (10)

Assuming zero Neumann boundary conditions, and inserting the approximation and weight
functions,

π =

∫
Ω

[(∑
Vj∇Nj

)
·
(∑

ci∇Ni

)]
dΩ−

∫
Ω
Q
(∑

VjNj

)
dΩ (11)

There are two vectors of unknown coefficients (i.e., Vj and ci). This problem can be solved
by making the functional stationary with respect to the Vjs. We are effectively trying to
find a solution (ci) that minimizes the functional with respect to the unknown coefficients.
Dropping the summation notation and taking the partial of the functional with respect to
the Vj terms yields

∂π

∂Vj
=

∫
Ω
k (∇Ni · ∇Nj) dΩ−

∫
Ω
QNj dΩ = 0 (12)

2



The stiffness matrix is then

Kij =

∫
Ω
k

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y
+
∂Ni

∂z

∂Nj

∂z

)
dΩ (13)

The load vector is
Fj =

∫
Ω
QNj dΩ (14)

Discretizing and performing the numerical integrations on all of the elements yields the
following linear system:

Kijci = Fj (15)

Applying the same procedure with convection boundary conditions yields the follow-
ing (in tensor notation):

∂π

∂Vi
=

∫
Ω
kNi,kNj,kcj dΩ +

∮
Γ
hNiNjcj dΓ =

∫
Ω
NiQdΩ +

∮
Γ
hNiT∞ dΓ (16)

The surface integrals are somewhat complicated by the fact that we must integrate a two-
dimensional shape in three dimensions. They must be transformed to two-dimensional
space and integrated there. The Jacobian determinant can be written as

det(J) ≡ J = dξ × dη · dζ (17)

In tensor notation,
J = εijk dξj dηk dζi (18)

where
dξj =

∂Nj

∂ξ
dηk =

∂Nk

∂η
dζi =

∂Ni

∂ζ
(19)

The 2D element with arbitrary orientation in R3 can be transformed by setting the Jacobian
to

J = εijkdξjdηkni (20)

where ni is the face unit normal vector. This is essentially enforcing no variation in the ζ
direction.

The shape functions for the trilinear element can be derived using a tensor product.
The 1-D linear shape function can be written as

ψ(ξ) =

{
1− ξ

2
,
1 + ξ

2

}
(21)

For the trilinear element, the shape functions are defined as follows:

Na(ξ, η, ζ) ≡ Nijk(ξ, η, ζ) = ψi(ξ)ψj(η)ψk(ζ) (22)

Care must be taken to ensure that the node numbering matches with the numbering in the
tensor product. If not, the mapping must be defined.

3



3 Validation

Several meshes were generated for a unit cube (i.e., hexahedral, prisms, and tetrahedral).
The order of accuracy of the code was verified using the exact solution to the following
equation:

∇2T = −3π sin(πx) sin(πy) sin(πz) (23)

with the exact solution being

T (x, y, z) = sin(πx) sin(πy) sin(πz) (24)

The temperature on each exterior surface is set to zero using Dirichlet boundary condi-
tions.

The orders of accuracy are listed below. They were computed using the L2 norm of the
error. That is,

E2 =

∫
(Tnum − Texact)

2 dΩ (25)

The integral was evaluated using 3-point Gaussian quadrature (corresponds to 27 points
in 3D). The orders of accuracy are listed below:

Order of accuracy for hexes is 1.999946
Order of accuracy for prisms is 1.917929
Order of accuracy for tets is 2.146208

10
−5

10
−4

10
−3

10
−4

10
−3

10
−2

1/N

L
2
n
o
rm

o
f
e
rr
o
r

hexes

10
−5

10
−4

10
−3

10
−4

10
−3

10
−2

1/N

L
2
n
o
rm

o
f
e
rr
o
r

prisms

10
−5

10
−4

10
−3

10
−4

10
−3

10
−2

1/N

L
2
n
o
rm

o
f
e
rr
o
r

tets

Figure 1: Plots showing the L2 norm of the error vs the inverse of the cube root of the
number of elements.

The fine meshes used for each case are shown below:

4



Figure 2: Hexahedral mesh.

Figure 3: Prism mesh.

5



Figure 4: Tetrahedral mesh.

The solutions on each mesh are also shown below:

Figure 5: Hexahedral solution.

6



Figure 6: Prism solution.

Figure 7: Tetrahedral solution.

4 Results

The code was applied to two problems, namely, steady-state heat conduction in a chip
made up of 9 different materials and inviscid, irrotational flow of air around a sphere. The

7



heat conduction solution was validated using an existing code that has been thoroughly
validated.

4.1 Heat conduction

(a) BGA mesh. (b) BGA mesh–close-up.

(a) Contours of temperature using well-
validated code.

(b) Contours of temperature using the new code.

8



(a) Volume slice showing contours of tempera-
ture using well-validated code.

(b) Volume slice showing contours of tempera-
ture using the new code.

4.2 Potential flow

The code was also applied to potential flow around a sphere. The freestream velocity was
set to 10 m/s. A hybrid mesh consisting of tetrahedral and prism cells was generated using
Pointwise. Prisms were extruded from the surface of the sphere.

(a) Mesh for potential flow case (b) Close-up of sphere inside mesh for potential
flow case.

9



Figure 12: Slice showing contours of the x-component of velocity along with streamlines.

5 Future work

The code will be slightly modified so that sensitivities to design variables can be computed
using the semi-analytic complex variable method. Also, the current setup uses a direct
solver. Iterative solvers will be added.

10


	Introduction
	Formulation
	Validation
	Results
	Heat conduction
	Potential flow

	Future work

