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Two mesh refinement methods are applied to an inviscid test case and the results are
compared with the exact solution from gasdynamics theory. One method is a local h-
refinement that is native to ANSYS Fluent and the other is an r-refinement method called
the deformation method. An insightful, flow-based explanation of the deformation method
is provided. Results show that both methods are capable of improving the quality of the
solution, but the h-refinement method increases the number of nodes in the domain and
changes connectivity information. The deformation method accomplishes similar results
by redistributing points within the mesh. The benefits and potential limitations of both
methods are discussed.

Nomenclature
f Monitor function
J Jacobian determinant
n Normal vector
PEC Principle of error conservation
t Time
v Node velocities
14 Volume
w Potential function
%) Transformation
w Relaxation parameter
Superscript
n Time level
k Iteration level
Subscript
) Step in z-direction
j Step in y-direction

I. Introduction

Q N adequate discretization or mesh (amongst various factors) is required to ensure that the numerical
solution of a partial differential equation is adequate. Because it is difficult to discern a prior: the
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regions where the solution will not be adequately resolved, a myriad of solution-based mesh adaptation
schemes that allow for increased accuracy have been developed and are in wide use. Amongst these, only the
subdivision and moving-mesh schemes are considered here. The former inserts points in regions of interest,
changes connectivity information and increases the total number of points. The latter simply redistributes
the points in the domain so that points are clustered towards regions of interest without affecting connectivity
information.

Current methods for mesh adaptation include local refinement via mesh motion (r-refinement) and sub-
division/coarsening schemes such as AMR, (h-refinement). In both methods, a physical variable that is
related to solution gradients or an error estimate is used to identify regions where refinement should occur.
Implementation of subdivision schemes is complicated because the data structure must change because of
changes in connectivity and total number of nodes. One way to bypass this data structure issue is to use
mesh motion schemes which typically employ physics-based analogies such as the spring analogy' ? or linear
elasticity PDEs® to move the mesh points toward areas of interest. Physics-based analogies for mesh motion
work reasonably well, but have no guarantee of positive cell volumes. Some codes attempt to untangle folded
meshes, but for large deformations, the mesh motion and untangling can fail thereby resulting in failure of
the flow solver.

Liao and Anderson” introduced a new approach to mesh generation that makes use of concepts in differ-
ential geometry. The new method was based on previous work on volume elements on a Riemannian manifold
by Moser.” The method has been successfully applied to mesh adaptation and moving meshes.% 7% 10;11
The deformation method is particularly useful for unsteady flows as compared to h-refinement schemes be-
cause it does not require any point-insertion or coarsening. The clustering travels along with the moving
features in the flow.

The main benefits of the deformation method over other mesh movement schemes and the well-known
elliptic grid generation method are: (1) It has solid mathematical foundation, namely, the ability to pre-
scribe the Jacobian determinant in both two- and three-dimensions has been mathematically proven in the
continuous sense, which implies that the method will create non-folding meshes if properly implemented; and
(2) Its implementation is based on linear differential operators such as the scalar Laplacian operator. Being
able to prescribe the Jacobian allows indirect, but practical control over the point distribution. The imple-
mentation of the deformation method is straightforward and involves solution of a scalar Poisson equation
with Neumann boundary conditions and dynamic ordinary differential equations.

The goal of the current work is to compare the deformation method refinement with a local subdivision
scheme native to ANSYS® Fluent®. An insightful explanation of the deformation method is provided,
and a simple, inviscid test case involving supersonic flow in a duct is used to compare the results from the
adaptation methods with inviscid gasdynamics theory. The pros and cons of both methods are discussed.

A. Background

Suppose there is an initial uniform mesh on a domain Q. Let f(£,7,¢,t) > 0 be a size function (or monitor
function) which is small in regions where the error is large. In order to enhance the mesh resolution where
the error is large, the initial mesh is deformed by a family of transformations ¢(€, 7, (,t) for ¢ > 0 such that

J(p) = flp,t) t>0 (1)
where J(p) > 0. The family of transformations given by ¢(§,7,(,t) can be viewed as a “mesh flow” that is
independent of the fluid flow with a velocity field given by

Oy

V(&nvcat) = E (2)

The method for determining the proper velocity field so that (1) is satisfied is discussed next. Let W be any
cell of the initial mesh, and let ¢ (W) be the deformed cell of W under the transformation ¢(&,n,(,t). A
proper velocity field is determined by the following principle of error conservation (PEC) which is equivalent
to the equidistribution principle:'? '?

1
i/ Lav—o >0 3)
dt Jo,wy [

The “mesh flow” represents changes in the point distribution of the mesh which are accomplished so that

the total error is conserved. Figure 1 depicts the deformation of a quadrilateral cell W and its image ¢(W)
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- large error

small error

Figure 1. Diagram of “mesh flow.”

under the “mesh flow” (£, n,t) which both contain the same amount of error represented by 1/f. The
shades of gray correspond to different levels of error.
For purposes of the PEC analogy, 1/ f is replaced by density p, and (3) becomes the conservation of mass

under the “fow” (&, n, ¢, t); hence,
d

ad pdV =0 t>0 (4)
dt Jo,w)

The differential form of (4) is hence the familiar continuity equation

op B
E—I—V-(pv)—o (5)

)+ ()

Letting u = v/f and rearranging, (6) becomes

=)

Assuming V x u = 0, a potential function w can be defined whereby

The differential form of (3) is then

Vw=u (8)

o5 (3)

which is a scalar Poisson equation. The Neumann boundary condition on 0f2

Inserting (8) into (7) yields

Vw-h =0 (10)

is applied so that the nodes can move tangential to the boundaries, but not normal. The scalar Poisson
equation with Neumann boundary conditions is then solved to determine nodal velocities used to deform the
mesh. A proof is provided in Appendix A which shows that (1) holds under (2), (8) and (9).

B. Mesh adaptation process

In general, mesh adaptation for steady problems can be described using the diagram in Fig. 2. The geometry
and mesh are created, the flow solve is accomplished and the mesh is adapted according to the error estimates
extracted from the initial solution. After adapting the mesh, the flow solver is run again to evaluate the
effect of the adaptation on the solution. A physical variable of interest is chosen (in this case, total pressure
ratio) and a loop between adaptation and the flow solver is iterated until the variation in the chosen variable
is sufficiently small. In other words, if the chosen variable is not changing with further adaptation, the
iterative process has converged.
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Generate
mesh

Flow solve

Figure 2. Diagram of the mesh adaptation process.

II. Implementation for steady simulations

The previously described deformation method can be used for dynamic simulations where ¢ is the same
t used in the simulation or it can be used in static mode where t is artificial time. In the work reported
here, the method was applied to a steady case so t is artificial time. The finite difference method with
the appropriate transformations was used in this implementation. The inverse transformations between the
physical and computational planes are given by

z=x(§n) (11a)
y=y(&n) (11b)

The monitor function used to adapt the mesh is formed as follows:

Co

fo= 1+ C|Vp|

(12)
The goal of the adaptation is to generate a mesh with J = fy. In (12), C is a constant controlling the strength
of adaptation, and Cj is a normalization constant which is determined so that fj satisfies the compatability
condition given in (16) with ¢ = 1. To compute the gradient of the chosen flowfield variable, a second-order
accurate finite difference method with the transformations given in (11) was used. The monitor function

fo represents the final point distribution desired. Next, artificial time ¢ is introduced and an intermediate
function, f, is constructed as follows:

F=l—t+tfy for 0<t<1 (13)

At t =0, (13) yields f: 1. At t =1, (13) yields fo which is the desired point distribution. In discrete form,

fr=1+t"—t"fy (14a)
Pl =14t gt g (14b)

where
T ="+ At (15)

The number of time steps is chosen and the function f is normalized at each time step so that the
following condition is satisfied (in two dimensions for this work):

//}dA: 19 (16)

In (16), || is the total area of the domain. Application of (16) yields
forrt
f== = dA 17
ol /) 7 (17)
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where f is the monitor function. Equation (17) is required for f to be a Jacobian; also it enforces compati-
bility® so that the solution of the Poisson equation is unique. This simple normalization is a critical step in
the application of the deformation method. Next, the right hand side of (9) is determined using first-order

accurate finite differencing:
(1Y (11 as)
ot \f) " At \ ol fn

Poisson’s equation is solved using second-order accurate finite differencing and the successive over-relaxation
(SOR) method. The difference equation for the interior points is given by

1
k+1 k k+1 E k+1 2
wzj ~ 1 (wiJrl,j + wijl,j T w1t wi,;‘rq —h gi,j) (19)
where g; ; is the source term determined in (18). For the present work, the relaxation parameter was set to
1.2.

After solving Poisson’s equation for w, the node velocities must be computed. The velocity field is given
by

v=fu= fVw (20)
The new node coordinates are determined by solving first-order ODEs in the spatial coordinates.
dx
g 21
7=V (21)

This is accomplished using Euler’s method. In two dimensions, the numerical solution is given by
"= 2" 4o, At (22a)
Yyt =" + o, At (22b)

Time is then incremented by At and the process beginning with normalizing the monitor function is repeated
until ¢t = 1. A diagram of the algorithm is provided in the Appendix.

A. Deformation method code

A general C++ code was developed to implement the deformation method. Employing object-oriented
programming enabled development of a code that is easily extensible and stand-alone testing of each method
before it was implemented in the broader code.

B. Test case

The test case used to compare the adaptation is a duct with a ramp and oblique shock reflection. The solution
from inviscid gasdynamics will be compared with the results from Fluent’s adaptation and the deformation
method adaptation. A diagram of the geometry can be seen in Fig. 3. The test case was designed so that
the reflecting oblique shock cancels at the bottom of the ramp. A Mach number of 3 was used for the
simulations.

/////////////////////

Flow direction —— @

277774
L1770 070707777777707777777777777,
177777777777777277272277277:

®

Figure 3. Test case geometry.

2Also known as a gage condition.
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C. Computational Tools
1. CFD General Notation System (CGNS)

The developed code is linked with CGNS libraries so that binary CGNS files can be read and written. Use
of CGNS formatted files allows for a unified file format that is compatible with mesh generation software,
CFD codes, and post-processing software.

2. Pointwise®

A series of scripts in the Pointwise® Glyph language were developed to facilitate rapid generation of high-
quality structured meshes. The scripts used the elliptic mesh generation capabilities of Pointwise.

3. ANSYS® Fluent®

ANSYS® Fluent®is a popular, commercial flow solver that is capable of solution-based mesh adaptation.
Three options are available for mesh adaptation within Fluen‘c®7 namely, gradient-based, isovalue-based and
curvature-based. The static, gradient-based approach is used for this project since the test case involves
shock discontinuities in the flow field. The mesh adaptation is accomplished by specifying a flow variable,
the limits of the gradient, and choosing either hanging node or conformal mapping adaptation. Hanging
node adaptation was chosen for the case presented in paper.

To locate regions where refinement should occur, Fluent®uses an error estimate given by

el = A2V ] (23)

where A is the cell area, 7 is a weight factor, and f is the desired field variable (in this case, static pressure).
This error estimate is normalized by the maximum value of V f in the domain. The density-based, explicit
solver with Roe’s flux difference splitting and second-order spatial discretization was used to solve Euler’s
equations.

4. CFL3D

CFL3D is a structured, three-dimensional, finite volume flow solver with a wide range of features that was
developed at NASA Langley Research Center. The Euler solver within CFL3D was used in this work and is
implemented using a semi-discrete finite-volume formulation.'” Second-order accurate spatial differencing is
used for this work. Flux-difference splitting was accomplished using Roe’s scheme and the smooth inviscid
flux limiter was used to avoid oscillations in the numerical solution due to the shock waves. Because CFL3D
only writes out a vector of conserved variables, density was used to form the monitor function for the
deformation method rather than pressure. This is acceptable because both, density and pressure, increase
rapidly because of the shock compression.

ITI. Results

Simulations were performed on the same initial structured grid using ANSYS® Fluent®with local h-
refinement and CFL3D with iterative deformation method r-refinement. The dimensions of the initial mesh

HHHHH O

Figure 4. Initial mesh.
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are 160 x 40. The mesh can be seen in Fig. 4. Contours of pressure for the initial mesh using Fluent®and
CFL3D can be seen in Figures 5 and 6, respectively.

In an inviscid flow, shock waves are assumed to be infinitely thin discontinuities.
both flow solvers show poorly resolved shocks (i.e., they are smeared).

§

' Initial results from

Figure 5. Contours of pressure on the initial mesh from Fluent.

Figure 6. Contours of pressure on the initial mesh from CFL3D.

A. Deformation method adaptation

The deformation method refinement was applied iteratively (five iterations) with one iteration consisting of
refining the grid from the previous solution and running a flow solve using CFL3D. The final, deformed mesh
is shown in Fig. 7. The final mesh shows clustering toward the location of the shock.

Examining the contours of density in Fig. 8, it can be seen that the final deformed grid resolves the shock
much better than the initial grid.

Figure 7. Final deformed mesh.
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Figure 8. Contours of pressure on the deformed mesh.

B. Fluent adaptation

Four flow solves were accomplished using ANSYS® Fluent®, one for the initial mesh and three refining
steps. The hanging node adaptation was used and the mesh was adapted to the gradient of pressure. The
final mesh can be seen in Fig. 9. The contours of pressure on the refined mesh can be seen in Fig. 10. A
similar trend of better resolved, thinner shocks on the adapted mesh is evident here as well.

Figure 9. Final mesh refined by Fluent.

Figure 10. Final pressure contours from Fluent.

C. Discussion

Fig. 11 shows a comparison between total pressure ratios on refined grids from Fluent®and from the defor-
mation method. Both methods approach the exact total pressure ratio from gasdynamics theory. The results
from the Fluent®refinement approach the exact solution in fewer iterations, but this is accomplished by in-
serting more points. The deformation method merely redistributes the existing points. The number of points
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(a) Deformation method total pressure ratio. (b) Fluent total pressure ratio.

Figure 11. Comparison between deformation method and Fluent total pressure ratio convergence.

added is shown in Table 1. The Fluent®refinement increases the total number of nodes by approximately
48 percent.

Table 1. Number of nodes added by Fluent.

Refinement level Number of nodes

Initial 6,400
Iteration 1 7,398
Iteration 2 9,504
Iteration 3 9,511

Another important benefit of the deformation method is the data structure. Inserting more points into
a mesh requires a complex data structure. The deformation method maintains the structured format which
allows for faster processing. As a preprocessing step, Fluent®converts all structured grids to unstructured
before operating on them. To highlight this difference, the wall-clock times of CFL3D, and Fluent®were
recorded for comparison. Both codes, in serial, were run on the initial grid, for 1500 iterations (on the
same machine with an Intel i5 CPU). Fluent took 58.593 seconds to solve the problem. The structured grid
solver, CFL3D, took 10.039 seconds to solve the problem, approximately six times faster than Fluent®. This
increase in speed can be partially attributed to the grid format. Structured grids are much more efficient
than unstructured grids with regard to processing time, memory and solution accuracy.'” The rest of the
speed up is most likely due to differences between the algorithms and solution methods in the different codes.

0.9456

—0.7565
—0.5673

—0.3782

'0.1801
1.280e-05

Figure 12. Contours of skewness on deformed mesh.
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The deformation method avoids complications with the data structure, but it can create highly skewed
cells. Figure 12 shows contours of skewness on the deformed grid. A definition of skewness can be found
in Ref. 18. Generally, skewed cells should be avoided as they can cause accuracy issues for finite volume
schemes.!” Although the cells in the region of the shock are skewed, the solution on the adapted mesh is
still much better than the original mesh as shown by a more accurate total pressure ratio through the shocks
and sharper, better resolved shocks. If the skewness was an issue, the methods of Salako are one approach
by which the adverse effects of mesh skewness on the flow solver could be mitigated.'”

IV. Conclusion

A different, flow-based explanation of the deformation method was provided. The deformation method
was compared with a local point-insertion scheme within ANSYS® Fluent®and the results were discussed.
The results presented above show the effectiveness of deformation method refinement and of Fluent’s point
insertion refinement. Fluent’s h-refinement increases the number of cells in the domain, thereby increasing
computation time and complicating the data structure by requiring an unstructured format. This is especially
true for unsteady flows because moving features in the flow field require refinement and coarsening. The
structured format is desirable because it is more efficient in terms of the data structure. Fluent® (an
unstructured solver) and CFL3D (a structured solver) were used to compare computation time. CFL3D was
much faster than Fluent®, which can at least be partially attributed to the data structure. The deformation
method is a robust approach to r-refinement. Unlike the popular physics-based analogies for moving grids,
the deformation method guarantees no negative cell volumes. However, the deformation method can create
highly skewed cells. Both methods have strengths and weaknesses. In the end, the analyst must select
whichever method is best for their particular application.

Appendices

A. A direct derivation of equation (6)

We begin with a change of variables from the physical plane, x = (1, 22, z3), to the computational plane,
& = (&1,82,&3). The left hand side of (3) satisfies the following:

1 _d 1 _ [ 4
Lo 7V = [ preave = [ gt (A1)
(dJ d
:/W _Ef ! +J<dtf 1(90,15))] dv (A.2)
i o o Of !
:/W 7 (div (£)>f—1+J((v¢f—1)~5f+ J;t )} av (A.3)
e _ - of !
:/ (divpv)f~H + (Vo f 1) v+ }JdV (A.4)
wl ot
:/ -divga(vf_l)—i-af_l] Jdv (A.5)
wl ot
_ / {div(vf‘l) + af_l} dv =0 (A.6)
(W) ot
Equation (A.6) is true if the integrand is equal to zero, or
div(vf) +% <}> = (A7)

which is identical to (6).
Note: Going from (A.2) to (A.3), we used Abel’s lemma which is available in a standard textbook on
differential equations and in Hughes and Marsden.?"
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B. Algorithm diagram

The first author would like to thank the CFL3D team for answering multiple questions about the code

and its operation.

EEE——
Form monitor

function
- )

P —
Define f = f(¢t)
t=0

Set At

Normalize

monitor
function

Form RHS

EEE——
Solve Poisson’s
equation

~—

)

Determine
v field
- )

P —
Solve ODEs
for new mesh

coordinates
- " J

Write out

deformed mesh

Figure 13. Algorithm diagram.
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