Numerical Study of a Transonic Wingtip Flow

James R. Grisham, Frank K. Lu and Brian H. Dennis

Department of Mechanical and Aerospace Engineering University of Texas at Arlington

The 30th International Symposium on Shock Waves July 19–24, 2015

Outline

- Transonic testing
- Ludwieg tube
- Objectives

2 Method

- Mesh generation
- Flow solver
- 3 Results and Discussion
 - Force coefficients
 - Surface flow visualization

4 Conclusions

Transonic testing Ludwieg tube Objectives

Importance of transonic testing

Figure: NASA/Lockheed Martin concept.

Figure: NASA/Boeing concept.

- Push toward more efficient and sustainable aircraft.
- New, unconventional designs are being proposed.
- Designs must be evaluated.
- Experiments can't be replaced.

Introduction Method Results and Discussion

Transonic testir Ludwieg tube Objectives

Ludwieg tube

- AEDC donated tunnel to UTA in 1976.
- Short duration facility (\approx 100 ms).
- Dynamic loading of force balances.
- Porous walls.
- Surface flow visualization.

Figure: Test section with wall-mounted wingtip.

Introduction Method Results and Discussion

Transonic testing Ludwieg tube Objectives

Ludwieg tube

- AEDC donated tunnel to UTA in 1976.
- Short duration facility (\approx 100 ms).
- Dynamic loading of force balances.
- Porous walls.
- Surface flow visualization.

Figure: Test section with wall-mounted wingtip.

Transonic testing Ludwieg tube Objectives

Objectives and methodology

For this study as a whole:

Objectives:

- To account for stress waves propagating through the tunnel by using a dynamic calibration.
- To use CFD to validate experimental force measurements.
- To draw deeper insights into the flowfield using a combination of EFD and CFD data.

Methodology:

- I Force measurements with and without calibration.
- **2** Experimental surface flow visualization.
- In RANS solution of entire test section.

Mesh generation Flow solver

Mesh generation

- Surface mesh generated using Pointwise.
- Volume mesh generated using AFLR3.
- Wall y^+ was set to 1.

Mesh generation Flow solver

Flow solver

NASA's FUN3D (Fully Unstructured Navier-Stokes 3D) flow solver.

- Node-base finite-volume code.
- Capable of 2D/3D simulations.
- Speed regimes from subsonic to hypersonic.
- Turbulence model: Spalart-Allmaras.

Figure: Hypersonic Inflatable Aerodynamic Decelerator (fun3d.larc.nasa.gov).

Mesh generation Flow solver

Mesh adaptation

- Feature-based mesh adaptation used to ensure mesh-independent solution.
- Metric used in adaptation was based on Mach number.
- Total number of cells decreased from 37 million to 27 million.
- Flow solver convergence improved.
- Mesh frozen below $y^+ \approx 300.$

Figure: Sample residual convergence.

Mesh generation Flow solver

Mesh adaptation

- Feature-based mesh adaptation used to ensure mesh-independent solution.
- Metric used in adaptation was based on Mach number.
- Total number of cells decreased from 37 million to 27 million.
- Flow solver convergence improved.
- Mesh frozen below $y^+ \approx 300.$

Figure: Sample residual convergence.

Mesh generation Flow solver

Mesh adaptation

- Feature-based mesh adaptation used to ensure mesh-independent solution.
- Metric used in adaptation was based on Mach number.
- Total number of cells decreased from 37 million to 27 million.
- Flow solver convergence improved.
- Mesh frozen below $y^+ \approx 300.$

Figure: Sample residual convergence.

Mesh generation Flow solver

Mesh adaptation, cont.

Figure: Original mesh.

Figure: Adapted mesh.

Mesh generation Flow solver

Mesh adaptation, cont.

Figure: Original mesh.

Figure: Adapted mesh.

Mesh generation Flow solver

Mesh adaptation, cont.

Figure: Original mesh.

Figure: Adapted mesh.

Mesh generation Flow solver

Modeling porous walls

- Methods have been developed for modeling the flow across porous walls.
- Pressure difference across porous walls:

$$\mathcal{C}_{p} = rac{p_{ ext{inner}} - p_{ ext{outer}}}{q_{\infty}}$$

- For the present experiments $C_p \approx -0.04$.
- Effects of flow across the walls neglected.

Figure: Test section with wall-mounted wingtip.

Force coefficients Surface flow visualization

Force coefficients

Figure: C_L vs α .

Figure: Drag polar.

•
$$C_L = L/(q_\infty S)$$
 and $C_D = D/(q_\infty S)$.

• Harris' results for 2D wing.

Force coefficients Surface flow visualization

Surface flow visualization

(b) CFD.

Force coefficients Surface flow visualization

Surface flow visualization

(b) CFD.

Force coefficients Surface flow visualization

Surface flow visualization

(a) Experiment.

(b) CFD.

Force coefficients Surface flow visualization

Surface flow visualization

Force coefficients Surface flow visualization

Surface flow visualization

Force coefficients Surface flow visualization

Surface flow visualization

Force coefficients Surface flow visualization

Surface flow visualization

(a) Experiment.

(b) CFD.

Force coefficients Surface flow visualization

Surface flow visualization

Force coefficients Surface flow visualization

Surface flow visualization

Conclusions

- Numerical results agree well with experimental results in terms of force coefficients and flow visualization.
- A more accurate interpretation of the surface flow visualization was made possible using CFD data.
- Dynamic calibration was effective.
- Results demonstrate the feasibility of using more complex models for calibration in conjunction with CFD.

Questions?