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Importance of transonic testing

Figure: NASA/Boeing concept.
Figure: NASA/Lockheed Martin concept.

Push toward more efficient and sustainable aircraft.

New, unconventional designs are being proposed.

Designs must be evaluated.

Experiments can’t be replaced.
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Ludwieg tube

AEDC donated tunnel to UTA in 1976.

Short duration facility (≈ 100 ms).

Dynamic loading of force balances.

Porous walls.

Surface flow visualization.

porous
walls

Figure: Test section with
wall-mounted wingtip.
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Objectives and methodology

For this study as a whole:

Objectives:

To account for stress waves propagating through the tunnel
by using a dynamic calibration.

To use CFD to validate experimental force measurements.

To draw deeper insights into the flowfield using a combination
of EFD and CFD data.

Methodology:

1 Force measurements with and without calibration.

2 Experimental surface flow visualization.

3 RANS solution of entire test section.
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Mesh generation

Figure: Geometry. Figure: Surface mesh.

Surface mesh generated using Pointwise.

Volume mesh generated using AFLR3.

Wall y+ was set to 1.
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Flow solver

NASA’s FUN3D (Fully Unstructured Navier-Stokes 3D) flow
solver.

Node-base finite-volume code.

Capable of 2D/3D simulations.

Speed regimes from subsonic to hypersonic.

Turbulence model: Spalart–Allmaras.

Figure: Hypersonic Inflatable Aerodynamic Decelerator (fun3d.larc.nasa.gov).
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Mesh adaptation

Feature-based mesh
adaptation used to ensure
mesh-independent solution.

Metric used in adaptation
was based on Mach number.

Total number of cells
decreased from 37 million to
27 million.

Flow solver convergence
improved.

Mesh frozen below
y+ ≈ 300.

Refinement 1 Refinement 2

Figure: Sample residual convergence.
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Mesh adaptation, cont.

Figure: Original mesh.

coarsening

refinement

Figure: Adapted mesh.
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Modeling porous walls

Methods have been
developed for modeling the
flow across porous walls.

Pressure difference across
porous walls:

Cp =
pinner − pouter

q∞

For the present experiments
Cp ≈ −0.04.

Effects of flow across the
walls neglected.

porous
walls

Figure: Test section with wall-mounted
wingtip.
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Force coefficients
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Figure: CL vs α.
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Figure: Drag polar.

CL = L/(q∞S) and CD = D/(q∞S).

Harris’ results for 2D wing.
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Surface flow visualization

Wall interference.

Shock-induced

boundary layer

separation.

Trailing edge

separation.

Reattachment.

(a) Experiment. (b) CFD.

Figure: Comparison between experimental and computational surface flow
visualization at α = 4◦ (top view).
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Conclusions

Numerical results agree well with experimental results in terms
of force coefficients and flow visualization.

A more accurate interpretation of the surface flow
visualization was made possible using CFD data.

Dynamic calibration was effective.

Results demonstrate the feasibility of using more complex
models for calibration in conjunction with CFD.
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Questions?
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